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Abstract 

Hydrologic variability has traditionally been accounted for by choosing “average” values of the inputs 
(the so-called “simple design event” method), though “Australian Rainfall and Runoff” now 
recommends the use of more robust approaches based on ensemble sampling and Monte Carlo 
simulation where possible. The studies that have been undertaken using these more sophisticated 
techniques have generally focussed on the hydrologic rather than hydraulic aspects of the problem; 
that is, on estimates of the flood peak, not on the magnitude of the resulting flood depth. While the 
explicit treatment of hydrologic variability represents only a modest increase in computational burden 
for hydrologic models, it is not easily accommodated in hydraulic models. There is little information 
available on the manner in which hydrologic variability influences the different steps involved in the 
estimation of design levels, and improved understanding of this will help identify where efforts are best 
prioritised. This paper illustrates the manner in which natural variability influences hydrologic estimates 
of flood peak, and quantifies how this propagates through to estimates of flood depths using hydraulic 
modelling.  

1. INTRODUCTION 

Design flood estimation is a focus for many engineering hydrologists. Estimates of frequent flood risks 
are most commonly required to size culverts and urban drainage systems, and estimates of rarer 
floods are required for the design of bridges for roads and railways, levees, detention basins and dam 
spillways. The flood characteristic of most importance depends on the nature of the problem under 
consideration, but it is often necessary to estimate peak flow and peak level, and depending on the 
nature of the system being studied these in turn may be dependent on the volume and rate of rise of 
the flood. The analysis might be focused on a single location – such as a bridge waterway or levee 
protecting a township– or it may be necessary to consider the performance of the whole catchment as 
a system, as required in urban drainage design. 
 
The methods available for estimating flood risk can be divided into two broad classes of procedures, 
namely (i) the direct analysis of observed flood and related data and (ii) the use of simulation models 
to transform rainfall into flood maxima. The first class of procedures include flood frequency methods 
and various forms of regional equations for the direct prediction of flood quantiles (eg Kuczera and 
Franks, 2016; Rahman et al, 2016). These approaches are particularly attractive as they avoid the 
need to consider the complex processes and joint probabilities involved in the transformation of rainfall 
into flood. However, the utility of these methods is heavily dependent on both the length of available 
records and their representativeness to the catchment and climatic conditions of interest. The second 
class of procedure involve the use of either event-based or continuous simulation models to convert 
rainfalls into floods. These approaches are widely used as they provide information on hydrograph 
shape as well as peak, and are readily able to simulate the mitigating influence of artificial storages 
and structures on flood behaviour. Importantly, such methods are also able to take advantage of 
rainfall data which is much more extensively available and more easily extrapolated (in both space 
and time) than streamflow data. Continuous simulation approaches utilise model structures which 
generally differ markedly from those used in event-based models. While these models are particularly 
suited to certain classes of design problems, event-based models are more widely used as they are 
applicable to a greater variety of design problems and more easily applied (Nathan and Ball, 2016). 
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Figure 1. Study catchment area. 

Regardless of which rainfall-runoff 
modelling approach is used, the 
key problem to solve is how best to 
assign an exceedance probability 
to the derived flood magnitudes. 
That is, rather than merely focus 
on the magnitude of the flood that 
results from the input design 
rainfall, special effort is made to 
minimise bias in the resulting 
exceedance probability in the 
transformation of rainfall into flood. 
This objective of “probability-
neutrality” is given considerable 
attention in the recently released 
Australian guidelines on flood 
estimation (ARR 2016, Ball et al, 
2016), which is a key difference 
between the current document and 
its three earlier versions. In natural 
catchments the sources of 
hydrologic variability which 
contribute most to flood magnitude 
(and hence the need for 
probability-neutral treatment) are 
antecedent soil moisture conditions 
and event losses, and the temporal 
and spatial patterns of rainfall. In 
engineered systems, this would 
most commonly include initial 
water level in artificial storages. In 
estuarine systems, flood depths 
may also be heavily dependent on 
tide levels and storm surge. The 
influences that need most attention 
varies with the system being 

analysed, but without taking steps to explicitly cater for the joint probabilities involved, there is a 
considerable margin for error (Weinmann et al, 2002; Rahman et al, 2002; Nathan et al, 2003; Sih et 
al, 2008; Kuczera et al., 2006). 
 
The techniques required to minimise bias in the resulting exceedance probabilities are more 
computationally intensive than traditional techniques. The hydrologic modelling techniques required to 
derive probability-neutral floods have been gaining in popularity over the past 10 or so years, and – 
with the right investment in modelling tools – the majority of practising flood hydrologists should make 
the transition to the new procedures with little difficulty. However, the effort required to adapt these 
procedures to hydraulic modelling represent a more onerous burden. The simulation times of hydraulic 
models are many thousands times longer than those of most hydrologic models, and thus it is 
worthwhile thinking carefully about which aspects of the simulation need focus, and which can be 
simplified. 
 
This paper illustrates the manner in which natural variability influences hydrologic estimates of flood 
peaks and quantifies how this propagates through to estimates of flood depths using hydraulic 
modelling. The concepts are illustrated using simulation models of a large “natural” catchment in 
south-east Queensland, which is briefly described in the following section. 

2. STUDY CATCHMENT 

The Brisbane River catchment lies upstream of the city of Brisbane, in Queensland Australia. It has a 
catchment area over 13,600 km2 (Figure 1). The western border of the catchment is formed by the 
Great Dividing Range, and there are a number of smaller coastal ranges to the north and east. The 
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upper reaches of the catchment are covered by natural and plantation forests, and it supports grazing. 
The lower reaches of the catchment support a mix of light forest cover, dryland and irrigated 
agriculture. The rainfall gradient across the catchment is highly variable, from the wetter coastal 
hinterland ranges to the drier areas in the west of the catchment. Seven major tributaries drain into 
Brisbane River. The flood response of the catchment is very complex, and the potential for flooding 
from individual or multiple tributaries depends heavily on the speed and direction of the storm, and the 
spatial distribution of rainfall depths.  
 
Two major dams are located approximately in the centre of the Brisbane River catchment: Somerset 
Dam was built in stages between 1935 and 1959, and Wivenhoe Dam was built in 1984. Both dams 
are gated, and they have a large mitigating influence on flood flows in the lower half of the catchment. 
Since the objective of this paper is to assess the impact of hydrologic variability on flood peaks and 
flow depths, these dams were excluded from all simulations. That is, the catchment was modelled 
under “pre-development” conditions, and the results have no bearing on current levels of flood risk. 

3. SIMULATION FRAMEWORK 

3.1. Modelling Flood Magnitude 

The model used to simulate the hydrologic flood response of the catchment is the RORB event-based 
storage-routing model (Laurenson et al, 2007). The adopted model was calibrated by the Department 
of Natural Resources (1992) to ten large historic floods. It is a complex model comprised of 216 sub-
areas, and catchment response is divided into 18 homogeneous regions, each with its own set of loss 
values and routing parameter values.  The catchment is densely gauged, with around 25 long-term 
streamflow stations and over 75 rainfall gauges, and there was a good standard of data available for 
calibration purposes. 
 
The last storm used to calibrate the adopted model occurred in 1989, though it is worth noting that this 
data set included simulation of the 1974 flood, which is of similar magnitude to the devastating event 
which occurred in January 2011. This provides an ideal validation event, and the fit obtained to the 
derived inflows to Wivenhoe Dam (which impounds about half the Brisbane River catchment) is shown 
in Figure 2(a). 
 
A branched 1-D hydraulic model using the TUFLOW software (Ryan et al, 2013) was used to simulate 
flood levels associated with the derived flows. The model solves the 2nd order solution of the full 1D 
St Venant equations using an explicit numerical solution. A 1D solution was adopted in lieu of a 2D 
approach to ensure that the run times were sufficiently fast to allow the processing of many thousands 
of Monte Carlo simulations, as discussed in the following section. The model comprises more than 
2,500 channels covering the Brisbane River and major tributaries along the lower reaches of the 
Brisbane River. Loss parameters associated with bends and channel formations were finalised by 
calibration, and an example comparison with observed data is shown in Figure 2(b). 
 
 

 
Figure 2. Simulation of the January 2011 event showing a) validation of RORB model 
parameters, and b) an example calibration achieved by the hydraulic model. 
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Figure 3. Different simulation frameworks for achieving probability-
neutrality: simple event (blue shading), ensemble event (grey 
dashed), Monte Carlo treatment of aleatory uncertainty (green 

shading) and epistemic uncertainty (orange shading). 

3.2. Modelling Hydrologic Probability-Neutrality 

Event-based approaches are based on the transformation of a discrete rainfall event into a flood 
hydrograph using a simplified model of the physical processes involved. It requires the application of 
two modelling steps, namely: a runoff production model to convert the storm rainfall input at any point 
in the catchment into rainfall excess or runoff at that location, and a hydrograph formation model to 
simulate the conversion of these local runoffs into a flood hydrograph at the point of interest. The 
rainfall event is described by a given depth of rainfall occurring over a selected duration, where it is 
necessary to specify the manner in which the rainfall varies in both time and space. The input rainfall 
may represent a particular observed event, or else it may represent the depth of rainfall with a specific 
annual exceedance probability (AEP), ie a “design rainfall”. The former approach is most commonly 
used for model calibration and flood forecasting, the latter approach is used to estimate flood risk for 
design and planning purposes. The defining feature of such models is that they are focused on the 
simulation of an individual flood event, and that antecedent (and baseflow) conditions need to be 
specified in some explicit fashion. 
 

Event-based approaches 
represent traditional current 
practice in Australia and 
most overseas countries 
for derivation of design 
floods from design rainfalls. 
Traditionally, event-based 
models have been applied 
using a “simple event” 
approach, whereby 
probability-neutrality is 
assumed to be satisfied by 
careful selection of fixed 
values of parameter values 
and inputs. The recent 
ARR recommends two 
additional approaches, 
namely “ensemble event” 
and “Monte Carlo 
simulation”, to better 
ensure that probability 
neutrality is preserved 
(Nathan and Ling, 2016).  
 
The typical steps involved 
in the Simple Event method 
are shown by blue shading 
in Figure 3. The first step 
(point A) is to estimate the 
average intensity or depth 
of rainfall corresponding to 
a given AEP for a selected 
duration. The next step is 
to select representative 

values of other factors that influence the transformation of rainfall to flood hydrograph. At a minimum, 
this involves selecting representative temporal and spatial patterns of rainfall, and selecting 
appropriate loss parameters. Direct runoff (also known as “rainfall excess”) is simulated using a loss 
model, and this is then routed through the catchment to generate the design flood hydrograph. The 
hydrograph corresponding to the rainfall burst duration that results in the highest peak (the “critical 
rainfall duration”) is taken as the design flood hydrograph, and it is assumed to have the same annual 
exceedance probability as its causative rainfall. It needs to be stressed that probability-neutrality is an 
untested assumption with the simple event approach, and without reconciliation with flood frequency 
estimates using at-site or transposed gauged maxima, there is clear potential for this approach to 
produce biased results (Kuczera et al, 2006; Green et al, 2005; Sih et al, 2008; Ling et al, 2015). 
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With the ensemble approach (grey dashed lines, point B of Figure 3), a fixed factor with large 
influence on flood magnitude is replaced by a sample of values (an “ensemble”); each of these values 
is then input to the flood event model to derive a set of flood hydrographs. The magnitude of the 
design flood is then estimated from the weighted average of the hydrographs, where the weighting 
applied to each result reflects the relative likelihood of the selected input occurring. If a sample of 
observed temporal patterns is used instead of a single pattern of average variability, then studies have 
shown (Sih et al, 2008; Ling et al, 2015) that a simple arithmetic average based on a sample of 10 to 
20 patterns provides a reasonably unbiased estimate of the design flood. The rationale for this 
approach is that each of the patterns selected for the ensemble is equally likely. 
 
Monte Carlo methods provide a framework for simulating the natural variability in the key processes 
that influence flood runoff: all important flood producing factors are treated as stochastic variables, and 
the less important ones are fixed. The primary advantage of the method is that it allows the 
exceedance probability of the flood characteristic to be determined without bias (subject to the 
representativeness of the selected inputs). In the most general Monte Carlo simulation approach for 
design flood estimation, rainfall events of different duration are sampled stochastically from their 
distribution. This avoids any positive bias of estimated flood probabilities which may be associated 
with the application of the critical rainfall duration concept (Weinmann et al., 2000, 2002; Rahman et 
al, 2002). However, the Monte Carlo approach can be applied with selected rainfall durations (Nathan 
et al, 2003), where the resulting peak flows are then enveloped to select the critical event duration. 
Whilst adherence to the ‘critical duration’ concept could possibly introduce systematic bias into the 
results, it has the advantage of ensuring consistency with existing design approaches and allows 
much of the currently available design data to be readily used. 
 
The overall steps involved in a simple Monte Carlo simulation are shown by the green and blue-
shading in Figure 3. Details of the approach are provided in ARR (Nathan and Ling, 2016), but in 
essence the approach involves running the event model many hundreds or thousands of times, where 
the inputs that most impact on flood magnitude are sampled in accordance with the variation observed 
in nature (using either statistical distributions or ensemble samples). Once the synthetic maxima have 
been generated, the required design floods are obtained (point C, Figure 3) by traditional frequency 
analysis (eg Kuczera and Franks, 2016) or some more efficient approach, such as the Total 
Probability Theorem (Nathan et al, 2003) or importance sampling (Diernense et al, 2014).  It should be 
noted that the steps involved between points A and C in Figure 3 represents the scheme required to 
consider the joint probabilities associated with the variability of selected inputs. It represents the 
characterisation of aleatory uncertainty, which is the (irreducible) uncertainty associated with variability 
inherent in the selected inputs (eg, in the variability of rainfall patterns and catchment wetness). 
However, Monte Carlo schemes can also be used to consider epistemic uncertainty, and the 
additional steps involved in this are shown by the first and last steps in Figure 3 (orange shading). 
Epistemic (or reducible) uncertainty is due to lack of knowledge, and is associated with errors in the 
data or the simplifications involved in representing the real world by a conceptual model. In essence, 
the consideration of aleatory uncertainty allows the derivation of a single (probability-neutral) “best 
estimate” of flood risk, and consideration of epistemic uncertainty allows the characterisation of 
“confidence limits” about this best estimate. 

3.3. Modelling Hydraulic Probability-Neutrality 

All the schemes in the preceding section relate to the hydrologic modelling required to derive 
probability-neutral floods. Similar concepts apply to the hydraulic modelling required to convert these 
flows into depths, but the sources of aleatory and epistemic uncertainty are different. Typical major 
sources of aleatory uncertainty include variation in flows (at upstream or tributary locations) and tide 
levels in estuarine systems, though debris may also be an important factor, particularly where it may 
block control structures and reduce waterway area. Typical sources of epistemic uncertainty include 
the parameterisation of roughness and loss values, and any limitations on survey data that relate to 
channel and floodplain morphometry. The conceptual framework illustrated in Figure 3 is directly 
applicable to hydraulic modelling, the only differences being in the selection of the model and sources 
of uncertainty. 
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4. IMPACT OF NATURAL VARIABILITY 

4.1. Scenarios considered 

The manner in which natural variability (aleatory uncertainty) impacts on design flood peaks and flow 
depths is assessed by selectively relaxing the assumptions of probability-neutrality discussed in the 
previous section. A number of scenarios are considered, as summarised in Table 1. In this table the 
first two rows represent results for the traditional “simple event” method, in which fixed losses are used 
and a single temporal pattern based on the average variability method (AVM, Pilgrim and Cordery, 
1975); the only difference between the first two rows is that in the first, the AVM pattern is based on 
the sample of regional storms derived for the South-East Queensland region for ARR (Babister et al, 
2016), and in the second, the AVM pattern is based on a sample of 15 large storms prepared by 
Seqwater (2013). The third row of the table represents ensemble sampling of temporal patterns with 
all other inputs fixed. The final four rows provide the results for Monte Carlo sampling in which different 
sources of variability are progressively introduced. The first of these only considers the variation of 
losses throughout the year, the second then considers their seasonal variation, the third introduces 
variability in the temporal patterns, and the final – the most comprehensive simulation – considers 
variation in the spatio-temporal characteristics of rainfall over the catchment in combination with 
seasonally varying losses. This last scenario is considered to provide the most accurate set of flood 
estimates. Information on the annual and seasonal variation of losses was obtained from Hill et al 
(2015), and the median loss estimate is derived from the regional ARR design estimates derived by 
Hill et al (2016). The Monte Carlo scheme adopted uses the Total Probability Theorem to derived 
expected probability quantiles, as described in Nathan and Ling (2016). A total of 5000 simulations 
were undertaken to derive the flood quantiles (using the rainfall-runoff event model), and a stratified 
sub-set of 1250 simulations were then used to derive Monte Carlo estimates of flood levels (using the 
hydraulic model). 
 

Table 1.  Adopted modelling scenarios used to assess aleatory uncertainty 

Label Catchment 
wetness 

Seasonality Rainfall temporal pattern Rainfall spatial 
pattern 

Simple ARR Fixed Annual Fixed AVM pattern based 
on regional storms 

Fixed 

Simple Local Fixed Annual Fixed AVM pattern based 
on local storms 

Fixed 

Ensemble Local Fixed Annual Sample of 15 spatially 
averaged temporal patterns 

based on local storms 

Fixed 

Monte Carlo 
Annual Losses 

Single distribution 
over whole year 

Annual Fixed AVM pattern based 
on local storms 

Fixed 

Monte Carlo 
Seasonal Losses 

Four distributions 
(one for each 

season) 

Four 
seasons 

Fixed AVM pattern based 
on local storms 

Fixed 

Monte Carlo 
Lumped Temporal 

patterns 

Four distributions 
(one for each 

season) 

Four 
seasons 

Sample of 15 spatially 
averaged temporal patterns 

based on local storms 

Fixed 

Monte Carlo 
space-time 

patterns 

Four distributions 
(one for each 

season) 

Four 
seasons 

Sample of 15 spatially 
variable  temporal patterns 

based on local storms 

Variable, based 
on 15 local 

storms 

 
 

4.2. Impacts on flood magnitude 

Selected results from the different flood simulations are summarised in Figure 4. Results were derived 
for three sites, namely Savages Crossing, Mt Crosby, and the Brisbane Port Office (see Figure 1). The 
results shown in Figure 4 are for Savages Crossing, though a similar pattern of behaviour was found 
at the other two sites. The stochastic maxima shown in these plots represent the derived flood peak 
for a particular combination of inputs, where the result is plotted against the AEP of the causative 
rainfall. The derived frequency curves represent the relationship between the magnitude of the design 
flood and its AEP. The results obtained using the simple and ensemble event methods are repeated 
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on all four panels to facilitate comparison. 
 
The dependence of flood magnitude on the variability of different inputs is seen by the relative spread 
of results between the Monte Carlo simulations in the four panels of Figure 4. It is seen that the range 
of stochastic maxima associated with an annual distribution of losses (Figure 4a) is much narrower 
than is obtained when seasonal losses are considered as there is a lower variety of combinations 
possible. (It should be noted that the seasonality of storm arrivals has not been specifically derived for 
this illustrative application. Over 80% of simulated events occur in summer/autumn season, which is 
not particularly evident from the plot as the more numerous events plot over one-another; also, in 
reality the seasonality of losses varies gradually throughout the year, and not in four distinctive bands 
as approximated here). A greater spread of values is associated with the inclusion of temporal pattern 
variability (Figure 4c), and this increases slightly once spatial variability is included (Figure 4d). While 
the degree of scatter in the stochastic flood maxima differ markedly between the different Monte Carlo 
scenarios, the difference in their derived frequency curves is relatively modest as the derivation of 
expected flood quantiles takes the conditional probability of each maxima into account. The difference 
in the 1% AEP flood quantile across all three sites is generally less than 5% to 10% for the four 
scenarios considered. 
 

 
Figure 4. Stochastic maxima and derived flood peak quantiles for four Monte Carlo scenarios at 
Savages Crossing, where the results obtained using “simple event” and “ensemble event” 
methods are shown on all four panels. 
 
 
The results for the simple and ensemble simulations are also shown in Figure 4. It is seen that the 
“simple event” approach using single AVM patterns based on the 15 largest local storms (solid black 
diamond symbols) yield results that are close to the “best estimate”, which is indicated by the orange 
solid line in Figure 4(d). The same approach, but using patterns derived from regional storms over a 
wider region (black hollow diamond symbols), provide estimates that are around 25% to 30% lower. 
On the one hand it could be argued that the results based on local storms should give the better 
results because the data is sourced directly from the catchment of interest. However, it could also be 
argued that those based on a regional sample of storms reflect the variability in a larger more 
comprehensive set of storms, and these should provide more accurate results, at least for the rarer 
events considered. In reality, the degree to which simple event approaches are probability neutral are 
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very catchment-specific (Green et al, 2005; Sih et al, 2008), and it is not possible to determine (without 
the Monte Carlo results, or a frequency analysis based on a long reliable streamflow record) which set 
of results are more defensible. 
 
It is also seen that the average ensemble results (large red diamonds) also lie reasonably close to the 
“best estimate” based on the Monte Carlo simulation of seasonal losses and space-time patterns of 
rainfall (Figure 4d). The individual maxima used to derive the average ensemble estimate (small red 
diamonds) span the range of results obtained using the simple event models; indeed, they span the 
majority of the variability exhibited when both losses and temporal patterns are varied (Figure 4c), 
which indicates that the floods are more sensitive to temporal patterns than they are to losses. 

 
Figure 5. Stochastic maxima and derived flood peak quantiles for both flood peaks and flood 
volumes at Savages Crossing (based on consideration of variability in seasonal losses and 
space-time patterns of rainfall), showing the range of rainfalls contributing to a 5% AEP event. 
 
These simulations also demonstrate the difficulty of achieving probability-neutrality in the 
transformation of rainfall into floods. Figure 5 shows the stochastic flood maxima derived using 
seasonally varying losses and variable space-time patterns of rainfalls for Savages Crossing. The left 
hand panel of this figure shows variation in the derived flood peaks, and the right hand panel shows 
the corresponding plot for maximum 3-day flood volumes. The horizontal red arrow shows the range of 
AEPs of rainfalls that contribute to a 5% (ie, 1 in 20) AEP flood. With respect to flood peaks, it is seen 
that rainfalls as frequent as 20% to 50% AEP (falling on a wet catchment) and some rainfalls rarer 
than 1% (ie 1 in 100) AEP (falling on a very dry catchment) yield flood peaks that have an exceedance 
probability of 5% AEP. The range of rainfalls relevant to flood volumes is slightly narrower, but the 
range is still considerable. 
 

4.3. Impacts on flood depth 

The flow hydrographs generated for the results shown in the previous section were input to the 
hydraulic model to derive probability-neutral estimates of design flood levels. One practical problem 
with this kind of analysis is that running a hydraulic model is many thousands of times more 
computationally intensive than an event model. For example, 5000 runs of the flood event model take 
less than 30 seconds on a standard windows computer, whereas – without parallelisation – this 
number of simulations of the hydraulic model on a workstation computer would take around 20 days to 
complete. To undertake these runs, a sub-set of 1250 runs were extracted in a stratified manner from 
the sample of 5000 hydrographs, and the hydraulic model was configured to run in parallel across 
around 20 computer cores. This approach enabled each 1250 set of simulations to be undertaken in 
an elapsed time of about 8 hours. 
 
The results obtained from the hydraulic modelling is similar in behaviour but with a reduced range, 
compared to the flow results. Two Monte Carlo scenarios for flow depths (above channel invert) at 
Savages Crossing are shown in Figure 6, and again, similar behaviour was evident at the other two 
sites. The median difference between the three Monte Carlo scenarios over all AEPs and across all 
three sites is only 2% of the best estimate based on seasonal losses and space-time patterns of 
rainfall. The corresponding median difference between the “simple event” and “ensemble average” 
estimates is 5% of the best estimate. Overall, while the estimates of flood depth displayed a similar 
pattern of response as the flood peak estimates, the range of the variation is reduced. 
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Figure 6. Stochastic maxima and derived flood level quantiles for two Monte Carlo scenarios at 
Savages Crossing, where the results obtained using “simple event” and “ensemble event” 
methods are shown on both panels. 
 
 

4.4. Propagation of aleatory uncertainty 

The foregoing two sections illustrate how different approaches to modelling probability-neutrality 
impact on estimates of design flood peaks and flow depths. An understanding of the relative 
importance of this to the estimation of design peaks and flow depths helps determine how best to 
allocate effort to different aspects of the analyses. To this end, the results derived for the three 
locations shown in Figure 1 (Savages Crossing, Mt Crosby, and Port Office) were analysed, and the 
results of this are presented in Figure 7. 
 
The top three panels of Figure 7 show the results for peak flow estimates at the three sites, and the 
lower three panels show the corresponding results for peak flow depths. The solid diamonds represent 
the best estimate derived from six of the design scenarios summarised in Table 1, and the bars 
represent the range in flood peaks and depths associated with the different sources of variability 
considered. To facilitate comparison, the results are expressed in non-dimensional terms (as 
proportions of the best estimate derived using Monte Carlo analysis of seasonal losses and space-
time patterns of rainfall). The difference between the best estimates (ie the bias) and the variability of 
the corresponding peaks are calculated from the median results obtained for annual exceedance 
probabilities ranging between 10% and 1%. The range of the peaks contributing the simple event 
methods (based on local and ARR AVM patterns) is clearly zero as only one combination of inputs are 
considered. The range of peaks considered by the other methods increase as additional sources of 
aleatory uncertainty are considered, which reflects the patterns of results shown in Figures 4 and 6. 
 
The most striking result evident from Figure 7 is that aleatory uncertainty has about two to three times 
more impact on peak flow rates than it does on flow depths at all three sites. That is, the uncertainty 
due to different natural combinations of losses, temporal and spatial patterns of rainfall has a bigger 
impact on flood flows than it does flood depths. This is perhaps not a surprising result, but it suggests 
that greater effort needs to be spent on modelling probability-neutrality in the transformation between 
rainfall and streamflows, than between streamflows and flood levels. The extent to which this 
conclusion might be applicable to other catchments needs to be investigated, but such a difference 
would suggest that more complex Monte Carlo schemes might only need to be developed for the less 
computationally intensive rainfall-runoff models, and that simpler schemes might be adequate for the 
more resource-intensive hydraulic models. That is, for those design problems requiring the estimation 
of inundation levels (and consequences) associated with a specified exceedance probability, there is 
strong evidence that aleatory uncertainty needs to be explicitly considered when transforming design 
rainfalls into flood hydrographs, but there may be a lesser need to accommodate such uncertainty 
when routing the probability-neutral design hydrographs through hydraulic models. The decision as to 
whether Monte Carlo modelling is required in the hydraulic analyses is likely to be very site-specific, 
and will depend on how sensitive the consequences of inundation are to small changes in level.  
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Figure 7. Bias and variability in design estimates of peak flow and depths associated with 
different approaches to modelling probability-neutrality, where the solid diamond symbols 
represent the best estimate from each approach, and the bars denote the range of flood peaks 
resulting from different combinations of losses, temporal and spatial patterns of rainfall. 
 

5. CONCLUSIONS 

The new Australian guidelines on flood estimation have introduced a range of procedures to 
accommodate the joint variability of major factors that influence the estimation of flood peaks and 
levels. The need for these new procedures is well established in the scientific literature, but it is only in 
the last decade that the necessary design information and procedures have been developed to allow  
their application to practical design problems. This paper illustrates that an estimate of design peak 
flow is influenced by rainfalls that span an order of magnitude around the exceedance probability of 
interest; similar results were found for design estimates of flood volume, and flood depths. These 
results are consistent with the findings of other published studies, and are likely to be of general 
relevance to flood estimation practice. 
 
The analyses in this paper shows that for the catchment considered, natural variability in losses, 
temporal and spatial patterns of rainfall has about two to three times more impact on peak flood flows 
than it does flood depths at all three sites. Such results have implications for how effort is prioritised 
when modelling the probability-neutral transformation of rainfall into floods, and their subsequent 
transformation into levels. The extent to which this finding is relevant to other catchments needs 
further investigation. 
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