Backwater Effects of Piers and Abutments in 2D - Replication of Physical Model Tests in a 2D Hydrodynamic Computer Model

Joel Gavin Leister 353049

Department of Civil and Environmental Engineering Melbourne School of Engineering University of Melbourne

November 2010

Engineering Assignment Coversheet

Please note that you:

- Must keep a full copy of your submission for this assignment
- Must staple this assignment
- Must NOT use binders or plastic folders except for large assignments

Student Number(s):

353 049

Group Code (if applicable):

Assignment Title:	Backwater effects of Piers and Abutments in 20- Keplication of Physical Model Tests in a 2D Hydrody namic Computer Model
Subject Number:	421-659
Subject Name:	Research Project
Family Name:	Leister
Given Name:	Joel Gavin
Lecturer/Tutor:	Tuan Duc Ngo / Graham Moore
Due Date:	8/11/2010 (extension until 15/11/2010 granted)

For Late Assignments Only

Has an extension been granted?

As per email from Tuan Duc Ngo on 8/11/2010. Documentation can be provided if required.

A per-day late penalty may apply if you submit this assignment after the due date/extension. Please check with your Department/coordinator for further information. List and/or attach details of extenuating circumstances that your coordinator should take into account should you require an extension:

Read Carefully

Plagiarism is the presentation by a student of an assignment which has in fact been copied in whole or in part from another student's work, or from any other source (e.g.: published books or periodicals), without due acknowledgment in the text. **Collusion** is the presentation by a student of an assignment as his or her own which is in fact the result in whole or in part of an unauthorised collaboration with another person/s. Please read and agree to the University Policy and Procedures for Academic Misconduct *prior* to signing this form. The policy is available here: http://www.services.unimelb.edu.au/plagiarism/policy.html

Declaration: I declare that this assignmen collusion. I have read and ac Academic Misconduct.	y own work and does not involve y the terms outlined in the Univers	plagiarism or unauthorised ity Policy and Procedures for
Signed:	Date: _	15/11/2010
Date Received:	,	т

File: network\engineering student centre\Forms\eng_assignment_coversheet.pdf Created: 29/08/08 Author: ckolyvas

DOCUMENT CONTROL SHEET

Title :	Backwater Effects of Piers and Abutments in 2D - Replication of Physical Model Tests in a 2D Hydrodynamic Computer Model	
Author :	Joel Gavin Leister (353049)	
Synopsis :	This report documents the methodology and results of the research project into the backwater effects of piers and abutments in a 2D computer model. This report constitutes the final submission for 421-659: Research Project and has been undertaken as part of the Master of Environmental Engineering at the University of Melbourne.	

REVISION/CHECKING HISTORY

REVISION NUMBER	DATE OF ISSUE	CHECKED BY		IS	SUED BY
0	08/11/2010	JL		JL	
1	15/11/2010	JL	Feleviller	JL	Felecily

DISTRIBUTION

DESTINATION	REVISION			
	0	1	2	3
University of Melbourne (pdf)	1	1		
University of Melbourne	1	1		
Author's Copy	1	1		

Disclaimer

The discussion, conclusions and recommendations contained within this report are those of the author alone and do not necessarily reflect those of BMT Group and its associated companies, including BMT WBM.

Although the author believes the results contained herein this report to be correct, the author does not accept any responsibility for any consequences arising from the use of the information contained within it. People using the information should apply, and rely upon, their own skill and judgement to the particular issues to which they are considering.

EXECUTIVE SUMMARY

Bridge embankments and structures can significantly influence flooding patterns and flood levels on floodplains. The literature (Austroads 1994; Bradley 1978) provides details of how to estimate contraction and expansion losses and pier losses of bridge embankments and structures for desktop analysis. However, limited guidance is provided as to the application of these losses in a 2D modelling environment.

The author undertook research to ascertain the accuracy of a 2D hydraulic model, TUFLOW, in calculating the energy losses associated with the contraction and expansion of flow through a constriction and to ascertain the most appropriate method/s for reliably modelling the energy losses associated with bridge piers. To undertake the research 2D model results were compared to physical flume test undertaken by Liu et al (1957).

The research involved the development of a series of flumes within TUFLOW that were used to simulate a number of scenarios that were modelled in a physical flume by Liu et al (1957). These scenarios included constriction widths varying between 2 and 6 feet, as well as a number of pier combinations involving square shaft, single shaft, double shaft and round-ended narrow pier types. The TUFLOW flumes were of varying grid sizes to test the model's ability to replicate the physical models results at varying grid resolutions. The afflux predicted by each of these scenarios within TUFLOW was compared to the results obtained from the physical flume tests.

The results from the analysis undertaken have shown that TUFLOW can, within reasonable bounds, reproduce the results of the physical model. Recommendations regarding the modeling of constrictions and piers within a 2D hydraulic model are made.

STATEMENT

This work has not been previously submitted for a degree or diploma in any university. To the best of my knowledge and belief, this report contains no material previously published or written by another person except where due reference is made in the report itself.

Heleiler

Joel Gavin Leister

BEnvEng

(Student Number 353049)

14/11/2010

ACKNOWLEDGEMENTS

The author would like to acknowledge the following people who have provided support and advice throughout this research project:.

- Dr Mark Jempson for his advice and guidance throughout the project;
- Dr Graham Moore for his assistance throughout the project;
- The staff and management of BMT WBM for their support and assistance; and
- Kerryn Leister for supporting me during the past 2 years of study and being there when I needed anything

CONTENTS

	Executive	e Summary	i
	Statemen	t	ii
	Acknowle	edgements	iii
	Contents		iv
	List of Fig	gures	vi
	List of Ta	bles	vi
1	INTRODU	CTION	1-1
2	LITERAT	JRE REVIEW	2-1
3	Метнор	OLOGY	3-1
	3.1 B	ase Case	3-1
	3.1.1	The Test Flume	3-1
	3.2 A	butments Tests	3-4
	3.3 P	ier Tests	3-4
	3.3.1	Method One (Form Loss Coefficients – Option One)	3-5
	3.3.2	Method Two (Form Loss Coefficients – Option Two)	3-7
	3.3.3	Method Three (Blocked and Restricted Model Elements)	3-7
4	RESULTS	S AND DISCUSSION	4-1
	4.1 B	ase Case	4-1
	4.1.1	Test Flume Calibration	4-1
	4.2 A	butment Tests	4-3
	4.2.1	Influence of Viscosity Coefficient	4-3
	4.2.2	Abutment Analysis	4-4
	4.3 P	ier Analysis	4-11
5		SIONS AND RECOMMENDATIONS	5-1

6-1

APPENDIX A: LIU ET AL (1957) FLUME DATA – EMBANKMENT MODELS	A-1
APPENDIX B: LIU ET AL (1957) FLUME DATA – PIER MODELS	B-1
APPENDIX C: TUFLOW MODEL RESULTS – ABUTMENT MODELS	C-1
APPENDIX D: TUFLOW MODEL RESULTS – PIER MODELS	D-1
APPENDIX E: ABSTRACT SUBMITTED TO THE 7TH BIENNIAL VICTORIAN FLOODPLAIN MANAGERS CONFERENCE	E-1
APPENDIX F: PRESENTATION MADE TO THE 7TH BIENNIAL VICTORIAN FLOODPLAIN MANAGERS CONFERENCE	F-1

LIST OF FIGURES

Figure 3-1	The Physical Flume used by Liu et al (1957)	3-2
Figure 3-2	The varying element sizes of the TUFLOW flume	3-3
Figure 3-3	Model Schematisation for Abutment Test	3-4
Figure 3-4	Backwater Coefficient Base Curves (Subcritical Flow)	3-6
Figure 3-5	Model Schematisation for Pier Models (Method One)	3-7
Figure 3-6	Model Schematisation for Pier Models (Method Two)	3-7
Figure 4-1	Influence of Viscosity Coefficient	4-3
Figure 4-2	Abutment Analysis – Influence of Grid: Constriction Ratio	4-5
Figure 4-3	Abutment Analysis – Influence of Grid: Constriction Ratio (3 Foot Opening)	4-6
Figure 4-4	Abutment Analysis – Influence of Froude Number	4-7
Figure 4-5	Abutment Analysis – Influence of Froude Number (3 Foot Opening)	4-8
Figure 4-6	Abutment Analysis – Influence of Grid: Blockage Ratio	4-9
Figure 4-7	Abutment Analysis – Influence of Grid: Blockage Ratio (Excluding 2 and 3 Foot Openings)	4-10
Figure 4-8	Pier Analysis – Square Shaft Piers	4-11
Figure 4-9	Pier Analysis – Single Shaft Piers	4-12
Figure 4-10	Pier Analysis – Double Shaft Piers	4-13
Figure 4-11	Pier Analysis – Round-Ended Narrow Piers	4-14

LIST OF TABLES

Table 3-1	TUFLOW flume details	3-2
Table 3-2	Base Case Flume Scenarios	3-3
Table 4-1	Initial Flume Calibration Results	4-1
Table 4-2	Calibrated Manning's 'n' values	4-2
Table 4-3	Initial Flume Calibration Results	4-2

1 INTRODUCTION

Backwater calculations for bridge design in Australia are based primarily on the Austroads publication "Waterway Design – A Guide to the Hydraulic Design of Bridges, Culverts and Floodway" (Austroads, 1994). The section on bridge design is based on the publication, "Hydraulics of Bridge Waterways" (Bradley, 1978) resulting from work undertaken by Bradley for the National Highway Institute in 1978. The findings published in Bradley are based on a series of flume tests undertaken by Liu et al at the Colorado State University and documented in the publication "Backwater Effects of Piers and Abutments" (Liu, Bradley, & Plate, 1957).

The methods presented in Austroads (1994) are intended for desktop analysis techniques. No guidance is provided on the application of the losses in a 2D modelling environment. As 2D modelling is now relatively common, guidance on the use of the data available in Austroads (1994) and associated literature is needed within industry. Two cases in point are contraction and expansion losses and pier losses.

A 2D modelling scheme will inherently model the energy losses associated with contraction and expansion, but the reliability of the representation of the losses is dependent on the scale of the contraction relative to the model element size and the model's ability to replicate the energy losses associated with the varying scales of turbulence from sub-grid to larger than grid. There may be other modelling imperatives that dictate an element size that is too large to reliably represent the losses, in which case additional losses should be built into the model. The losses in Austroads (1994), which are presented as coefficients of velocity head, could be useful in this regard, but there is no basis for the modeller to make such a judgement.

In most situations the 2D model element will be larger than the pier width and so the 2D model will not reliably represent losses associated with piers. Therefore additional losses are normally applied to the 2D model. Austroads (1994) provides useful information in this regard in that pier losses are given as coefficients of velocity head. These coefficients can be applied directly to the 2D scheme but it is unclear if the losses should be applied to all elements across the width of the bridge and if element width should be reduced to allow for blockage.

The uncertainty regarding the modelling of structures in 2D hydraulic models has been highlighted by the work currently being completed on the revision to Australian Rainfall and Runoff as part of Project 15: Two Dimensional (2D) Modelling in Urban Areas.

The research documented herein aims to determine appropriate techniques for modelling energy losses associated with bridge constrictions and structures when using a two-dimensional (2D) hydraulic modelling scheme. Specifically, the following hypothesises will be tested:

- 1. That a 2D modelling scheme can reproduce, within reasonable bounds of uncertainty, the contraction and expansion losses associated with flow through a bridge opening as indicated by physical model tests undertaken by Liu et al (Liu, Bradley, & Plate, 1957); and
- 2. That the energy loss coefficients associated with bridge piers as reported in Liu et al can be applied in a 2D modelling scheme to reproduce, within reasonable bounds, the increase in water level reported by Liu et al.

This report documents the methodology and results from the research undertaken.

2 LITERATURE REVIEW

Hydraulic engineers have been exploring the behaviour of flow through constrictions since the late 18th century. Research undertaken in the early 20th century (including Yarnell (1934)) laid the groundwork for the study into the backwater effects caused by bridge abutments and piers. Up until the mid 1950's, the vast majority of research related to backwater effects had either been through mathematical methods or empirical methods (Liu et al, 1957). Liu et al (1957) provides a detailed summary of the work that has been undertaken in relation to backwater effects up until the mid 1950's.

The work by Liu et al (1957) undertaken at Colorado State University in cooperation with the US Department of Public Roads, was the first major piece of research undertaken where the backwater effects of abutments of piers were studied with flume tests. The research undertaken by Liu et al (1957) involved completion of over 1400 flume tests that analysed a series of abutment and pier types and configurations. The outcomes from this research were a series of graphs that can be utilised for the determination of "maximum backwater and the differential level of water surface across the embankment" (Liu, Bradley, & Plate, 1957). To the knowledge of the author, the results obtained by Liu et al (1957) have never been replicated through the use of 2D hydrodynamic model.

The research by Liu et al (1957) and work subsequently undertaken by Mattai (1976) formed the foundation for the publication, 'Hydraulics of Bridge Waterway' by Bradley (1978), which has become the industry standard for use in the determination of backwater caused by bridges. Whilst utilising the data collected by Liu et al (1957), Bradley also utilised numerous field observations and measurements obtained by the United States Geological Survey (USGS) in developing the practical design charts, procedures and examples contained within the publication. There is no advice contained within Bradley (1978) as to application of design charts and associated loss coefficients to either 1D or 2D hydraulic models. Bradley (1978) was adopted as the basis for the AUSTROADS (1994) publication, 'Waterway Design - A Guide to the Hydraulic Design of Bridges, Culverts and Floodways' which is considered to be the Australian guidelines for bridge design.

Numerous studies have been undertaken to determine a 1D model's ability to simulate the backwater caused by a bridge constriction (Seckin, Yurtal, & Haktanir (1998); Crowder, Pepper, Whitlow, Sleigh, Wright, & Tomlin (2004); Seckin & Atabay (2005); Sowinski (2006); Seckin, Haktanir, & Knight (2007); Seckin, Knight, Atabay, & Seckin (2008); Atabay & Seckin (2009); and numerous other studies). These studies have been limited to the validation of 1D models (or the calculation methods contained within) against experimental/laboratory data (flume tests) or methods presented in literature (primarily Bradley (1978)). Consequently, the ability of the various 1D model schemes available to represent the backwater caused by a bridge constriction is relatively well understood.

In more recent times, work has been undertaken in order to improve the understanding of a 2D model scheme's ability to represent the backwater effects of a bridge constriction. This research commenced in the mid 1980's, but has become more prevalent over the last 10 years as 2D hydraulic model schemes have become the industry standard for flooding (both fluvial and tidal) investigations.

Syme et al (1998) undertook some testing of different 2D model schemes in order to assess their ability to represent head loss through hydraulic structures. A variety of software packages, including

TUFLOW, Mike21, FESWMS and RMA, were assessed using a test model to determine their respective performance through a horizontally constricted and then a vertically constricted test model. Whilst Syme et al (1998) have demonstrated that "2D schemes adequately predict the head loss across a horizontal flow constrictions when compared to the theoretical calculations", "a comparison between 2D schemes and physical model results would be highly worthwhile" (Syme, Nielson, & Charteris, 1998). Syme et al (1998) also states that a number of other factors, including model timestep, model resolution and viscosity formulation will impact upon the model's prediction of backwater due to a hydraulic structure.

Barton (2001) sought to address the "perceived lack of understanding in the ability of 2D models to portray the energy losses associated with the turbulent nature of water flow" (Barton, 2001) through a contraction. In a particular, Barton (2001) studied the ability of two hydrodynamic models, TUFLOW and RMA2, to represent flow through an abrupt constriction using a variety of spatial representations. The research presented by Barton (2001) provided "confirmation that the spatial resolution of 2D models does have an impact on the ability of these models to predict energy losses due to turbulent effects" (Barton, 2001). One of the key outcomes of Barton (2001) was the comparison of energy losses predicted by the 2D models (TUFLOW and RMA2) when compared to some 1D models (Mike11 and HEC-RAS) and the values presented in literature (AUSTROADS (1994). Barton (2001) showed that a large amount of variability exists between the results derived from both the literature and the 1D model schemes. The challenge faced by Barton (2001) was a lack of a suitable standard for which to compare the tested 2D model schemes to. The research currently being undertaken hopes to address this lack of a suitable standard (as discussed by Barton (2001)) by attempting to validate the 2D hydraulic model, TUFLOW, to physical flume test data.

Syme (2001), although not specifically focussed on the determination of backwater from hydraulic structures, discusses a number of important points in relation to the way a 2D model will account for form loss through a structure. Syme (2001) discusses 2D model performance in relation to water surface profiles around a bend, through a box culvert and over a weir through the comparison of results to a 1D scheme. "The 1D approach typically uses special structure flow equations requiring specification of contraction and expansion loss coefficients", however, "this approach is not applicable or readily applied in the 2D schemes" (Syme, 2001). Consequently, Syme (2001) recommends that "on-going research and testing of 2D models to develop guidelines for adjustment of form loss related parameters when modelling hydraulic structures in 2D" (Syme 2001) should be undertaken. Syme (2001) also recommends that there should be the "establishment of guidelines and standard tests (preferably based on experimental results) for validation of 2D schemes" (Syme 2001).

Syme et al (2009) discusses that for complex structures, like a bridge with abutments and piers, "the modeller relies on judgment as to the energy losses that occur" (Syme, Jones, & Arneson, 2009). Syme et al (2009) describes how the 2D modelling scheme will inherently model some of losses associated with the expansion and contraction of flow through the structure and hence the pure application of loss values for literature (eg Bradley, 1978) would actually over-estimate the loss through a structure. Syme et al (2009) suggests that "the dilemma for the modeller is how much additional energy losses should be applied when using a 2D scheme" (Syme, Jones, & Arneson, 2009). Throughout the paper, Syme et al (2009) discusses the need for additional research into the application of loss coefficients from the literature in the 2D modelling environment. Syme et al (2009) also discusses a number of other factors that will influence the ability of the 2D hydraulic model to simulate the flow through a constriction, including the work undertaken by Barton (2001) and Syme

(2001). The outcomes from the current research will inform the modeller how much additional form loss will be required to account for the loss not inherently modelled by the 2D scheme. It is expected that the additional loss required will be dependent upon the model resolution and constriction width.

Craven (2009) undertook some research that aimed to help guide modellers as to the amount of 'extra' form loss that would need to be applied when modelling structures in TUFLOW, a 2D hydrodynamic model. The work by Craven (2001), compared the results obtained from TUFLOW (a 2D scheme) with those from HEC-RAS and CES-AES (both 1D schemes), as well as the results expected from the literature (Austroads, 1994). The research undertaken by Craven (2001) showed that the results from the TUFLOW model varied when compared to those from AUSTROADS (1994) and consequently additional research into the application 2D form losses in a TUFLOW model is recommended. Particular emphasis is placed upon the varying afflux achieved when the model grid size is varied (implications of grid size are also discussed in detail in Barton (2001)), and the variation that was observed between the 1D and 2D model results. The research suggests that a "major limitation of this study was the fact that no field or experimental data was used to verify TUFLOW afflux predictions" (Craven, 2009). This limitation will be overcome with the current research whereby the flume tests undertaken by Liu et al (1957) will be replicated in the TUFLOW hydrodynamic model. This will enable a better understanding of how the values presented in literature (Bradley (1978) and Austroads (1994)) can be applied to a 2D hydrodynamic model and in particular TUFLOW.

The review of the available literature has indicated that although vast amounts of previous research has been undertaken in the area of the backwater effects due to bridge constrictions, there is a need for further study. Further study (as suggested by Craven (2009), Seckin & Attabay (2005) and Syme (2001) in the area of model validation against experimental (flume test) data and the understanding of how the loss coefficients presented in the literature should be applied to a 2D model is of particular importance.

The research documented in this report has sought to address some of the gaps identified by the available literature and to help improve the understanding of how a 2D hydraulic model can reliably predict the afflux due to the presence of a hydraulic structure in a given floodplain.

3 METHODOLOGY

The computer modelling of the test flume used by Liu et al (1957) was undertaken using the hydraulic modelling package TUFLOW (BMT WBM, 2008). TUFLOW is a two-dimensional finite difference model that uses the 2D Shallow Water Equations to determine the water surface. The TUFLOW model is based upon a regular square grid of uniform elements that each contains information regarding the surface roughness (Manning's 'n' value) and topography.

The analysis was undertaken in three parts, broadly:

- Calibration of the test flume under normal flow conditions;
- Determination of the afflux due to the constriction of an abutment; and
- Determination of the afflux due to the presence of piers in the flowpath.

The results from each of these three analyses were compared to the results obtained from the physical flume, as presented in Liu et al (1957) in order to determine the ability of TUFLOW to reproduce, within reasonable bounds, the results of the physical flume.

These three components of the research are described in more detail in the subsequent sections.

The work by Liu et al (1957) was undertaken using imperial measurements (feet and inches), whilst TUFLOW relies on metric dimensions. Consequently, both imperial and metric dimensions are used throughout the description of the methodology.

3.1 Base Case

3.1.1 The Test Flume

The test flume used by Liu et al (1957) was 73.5 feet (224.2 metres) long, 7.9 feet (2.4 metres) wide and 2 feet (0.6 metres) deep. The longitudinal slope and surface roughness (Manning's 'n' value) of the test flume were able to be changed depending upon the test that was being undertaken. For the flumes used in this analysis, the slope was either 0.0012 m/m or 0.002 m/m and the roughness was described as either bar (Manning's 'n' of 0.024) or baffle (Manning's 'n' of 0.045). The flume used by Liu et al (1957) is represented diagrammatically in Figure 3-1.

Figure 3-1 The Physical Flume used by Liu et al (1957)

The flow rate was varied between 2.5 cubic feet per second (cfs) (70.79 litres/second (l/s)) and 5 cfs (141.58 l/s) and for each test case; normal flow was achieved within the test flume.

One of the objectives within this research was to determine the influence of grid size on TUFLOW's ability to reproduce the afflux from a given constriction. Consequently, a number of test flumes were created in TUFLOW using a variety of different element (grid) sizes. In total, 9 test flumes were set up, each using a different element size. These tests flumes are named according to the number of elements across the width of the flume (Table 3-1) and displayed diagrammatically in Figure 3-2.

Flume Name	Element Size (inches)	Element Size (metres)
RP03	31.60	0.803
RP04	23.70	0.602
RP05	18.96	0.482
RP06	15.80	0.401
RP08	11.85	0.301
RP10	9.48	0.241
RP12	7.90	0.201
RP15	6.32	0.161
RP20	4.74	0.120

Table 3-1 TUFLOW flume details

Figure 3-2 Varying element sizes of the TUFLOW flume

Model elements larger than 0.803 metres were not considered in this analysis as a number of the constrictions to be tested would have been smaller than the element size. Such constrictions would be deemed as 'sub-grid scale' and are best modelled using a 2D-1D linked model, in which the constriction would be modelled as part of the 1D scheme. Whilst numerous hydraulic modelling packages are capable of linking 1D elements to the 2D domain (TUFLOW included), such an analysis was beyond the scope of this research project.

Model elements finer than 0.120 metres were not considered in this analysis due to the expected depths within the flume expected to significantly exceed the element width. The work by Barton (2001) and the advice of BMT WBM (2008) indicate that caution must be used when the modelling involves a fine grid and deep water as the model may start to violate the assumptions of the 2D shallow water equations and result in erroneous solutions.

Nine individual flume scenarios were required to be modelled, as these models provided the basis for all future abutment and pier test models.

Scenario Name	Flowrate (cfs)	Roughness	Slope	Normal Depth (ft)
E01	2.50	Bar	0.0012	0.333
E02	2.5	Baffle	0.0012	0.523
E08	2.72	Baffle	0.002	0.478
E09	3.0	Bar	0.0012	0.360
E17	5.0	Bar	0.0012	0.484
E18	5.0	Baffle	0.0012	0.718
E19	5.0	Bar	0.002	0.416

Table 3-2 Base Case Flume Scenarios

The results from the base case flume calibration are presented in the results section of this report.

3.2 Abutment Tests

The abutment flume tests were based upon eight of the base case flume models. In total 40 abutment tests were undertaken which modelled five constrictions ranging in width from 2 feet to 6 feet. Each of the tests was conducted on the TUFLOW flumes which consist of 9 individual flumes of varying element size. The aim of these tests was to determine the influence of element size versus constriction width when determining the afflux, and more importantly, does TUFLOW replicate, within reasonable bounds, the results from the physical flume tests.

The constriction was modelled by varying the topography to create an opening in the flume of the required size. In each of the tests, a feature of TUFLOW known as a flow constriction (FC) was utilised. A flow constriction within TUFLOW allows the user to modify the properties of a given element to reduce the available flow width and therefore model a partially blocked cell (BMT WBM 2008).

Figure 3-3 shows the use of both topography modification and flow constrictions to model the required opening within the test flume. In this figure, the brown triangles located in the centre of flume show where the topography of the flume has been modified to represent the vertical board obstruction that is used to represent the abutment. The red squares indicate the cells that have had a flow constriction applied to reduce the available flow width of the these cells to match the modelled opening within the abutment.

Figure 3-3 Model Schematisation for Abutment Test

3.3 Pier Tests

The pier tests were undertaken using two distinct methods to determine their applicability in the determination of the afflux as a consequence of the presence of piers. The pier tests were undertaken on piers only and did not include any influence of significant abutment constrictions or the presence of a bridge deck, both of which would be of importance in any real-world analysis.

A number of different pier types, including square shaft piers, round-ended narrow piers, single shaft piers and double shaft piers, were analysed using a number of the flumes modelled as part of the base case calibration. The pier were tested in a number of different configurations of pier size and pier numbers as documented in the various tests undertaken by Liu et al (1957).

The pier tests were undertaken using three different methodologies; the use of form loss coefficients (two methods) and the blockage (or partial blockage) of elements containing piers. Both of these methodologies are documented in the subsequent sections of this report.

For all piers, other than the square shaft piers, only Method One and Method Two were used. This is due to the fact that the rounded faces of all the other piers types would not have been effectively modelled by the process used in Method Three.

3.3.1 Method One (Form Loss Coefficients – Option One)

Austroads (1994) documents the methodologies to determine backwater coefficients due to the presence of bridges in a floodplain. Specifically, it documents the methodology to determine the incremental backwater coefficient due to the effects of piers present in the flowpath and has been reproduced below:

Backwater caused by the introduction of piers in a bridge constriction is treated as an incremental backwater designated ΔK_P , which is added to the base curve coefficient. The value of the incremental backwater coefficient, ΔK_P , is dependent on the ratio that the area of the piers bears to the gross area of the bridge opening, the type of piers, the value of the bridge opening ratio, M, and the skew of the piers to the direction of flood flow. The ratio of the water area occupied by piers, A_P , to the gross water area of the constriction, A_{n2} , both based on the normal water surface, is assigned the letter J. In computing the gross water area, A_{n2} , the presence of piers in the constriction is ignored. The procedure is to enter chart A on Figure 3-4 with the proper value of J and read ΔK , and then obtain the correction factor, σ , from chart B for the opening ratios other than unity. The incremental backwater coefficient is then $\Delta K_P = \sigma \Delta K$.

Austroads (1994)

The methodology as described above was used to determine ΔK_P values for each of the pier flume tests undertaken. These ΔK_P values were applied to the TUFLOW model through the use of a form loss coefficient. The form loss coefficient is applied as an energy loss based on the dynamic head equation below:

$$\Delta h = \Delta k_P \frac{v^2}{2g} \qquad \qquad \text{Equation 1}$$

Figure 3-4 Backwater Coefficient Base Curves (Subcritical Flow)

Whilst Figure 3-4 shows the backwater coefficient base curve, it does not include a curve that could be applied to a single square shaft pier. In order to determine the curve for a single square pier, the ratio between the twin circular and single circular piers was determined and applied to the twin square piers. This resulted in a curve located between the single circular pier and the round-ended narrow pier. It is likely the form loss coefficients determined from this curve will not be as accurate as those determined for the other piers and may result in some degree of inaccuracy in the results from the square pier analysis.

The derived form loss coefficients were applied across the entire width of the flume (as shown in Figure 3-5). This method does not discretely model each individual pier; rather it treats the blockage caused by the piers in a holistic manner across the entire cross section of the bridge. In Figure 3-5, the light blue diamonds indicate the cells to which the form loss coefficients have been applied.

C:\JOEL_MENVENG\421-659_RESEARCHPROJECT\DELIVERABLES\53049REP_PDF.DOCX

• ••••••••••••••••••••••••••••••••••••	****	*****	• ••••••••••••••••••••••••••••••••••••
E			
E			
E			

Figure 3-5 Model Schematisation for Pier Models (Method One)

3.3.2 Method Two (Form Loss Coefficients – Option Two)

Method Two is almost identical to the method previously described; however, it differs in one key component. This method applies the form loss coefficients (as calculated using the process described in section 3.3.1) only to the cells that would contain a pier. In some models, depending on the number of piers and the size of the grid cell, this would result in the same model as developed as part of Method One. In other models, however, the number of cells to which the form loss coefficient is applied would be reduced and some cells would have no form loss coefficients applied to them.

Figure 3-6 shows the same flume setup as presented in Figure 3-5; however, as per Method Two, the form loss coefficients have only been applied to the cells that contain a pier. Consequently, there are cells across the width of the flume that do not have any form loss coefficients applied due to no pier being present in the element (grid).

* ************************************	- ; + + - ; + ; + ; + ; + ; + ; + ; + ; 		****
E			
		•	
E			
E			
E		·····	

Figure 3-6 Model Schematisation for Pier Models (Method Two)

For some of the flume tests there was no difference between Method One and Method Two due to number of piers within the cross section and the number of elements across the width of the flume. For example if 20 piers existed within the cross section, then there would be no difference between the two methods as each cell in all TUFLOW flumes would have included a pier.

3.3.3 Method Three (Blocked and Restricted Model Elements)

This method utilises flow constrictions (as previously described) to model the blockage of each individual pier. No additional form loss coefficients have been applied and hence this method is designed to model the contraction and expansion of the flow around the piers.

Individual flow constrictions have been determined to represent the piers that fall within a particular model element. At the larger grid sizes, this will result in multiple piers within a single element and the given flow constriction would represent multiple piers. However, at the smaller grid sizes, there will be flow constriction representing a single pier and elements will exist where no pier influence will be evident.

The schematisation of Method Three is identical to that of Method Two (Figure 3-6), however, instead of a form loss coefficient being applied to an individual cell, a flow constriction is applied. As discussed previously, a flow constriction is used to reduce to the available flow width of the cell and in this case, the individual cells have had their respective flow width reduced dependent upon the size and number of piers that is located within the given element.

4 **RESULTS AND DISCUSSION**

For each flume test, TUFLOW produced a geo-referenced data set detailing water surface levels, depths and velocity throughout the entire model domain (all 9 flumes) at the corner of each computational cell. These water levels, depths and velocities were extracted from these cell corners (known as h-points) and were used to generate the results presented in the subsequent sections.

4.1 Base Case

4.1.1 Test Flume Calibration

Once the various test flumes had been set up in TUFLOW, they were calibrated to the results observed in the original physical model tests. The models were initially run using the same parameters as determined by Liu et al (1957). The results from these initial runs are documented in Table 4-1.

Run ID	Normal Depth (m) (Liu et al, 1957)	Normal I (a	Depth obtained cross all 9 tes	l from TUFLOW t flumes)
		Mean (m)	Median (m)	Standard Deviation
E01	0.101	0.097	0.097	0.00
F02	0 159	0 141	0 141	0.00
E08	0.146	0.127	0.127	0.00
C00	0.140	0.127	0.127	0.00
E09	0.110	0.108	0.108	0.00
E17	0.148	0.147	0.147	0.00
E18	0.219	0.214	0.214	0.00
E19	0.127	0.126	0.126	0.00

 Table 4-1
 Initial Flume Calibration Results

As seen in the results of the initial flume runs (Table 4-1), TUFLOW under predicted the normal depth. Whilst this may seem to indicate that TUFLOW is unable to reproduce the results o the physical flume test, it actually highlights an issue between the physical model and the flume that has been set up in TUFLOW.

The Manning's 'n' value that was documented in Liu et al (1957) has been back-calculated using Manning's equation for each of the flume tests undertaken. This back-calculated Manning's 'n' value has been influenced by the friction loss experienced by the flow against the side walls of the flume.

TUFLOW does not account for the friction loss caused by the flow against the side walls of the flume. Consequently, to enable TUFLOW to replicate the normal flow depths observed in Liu et al (1957), a higher Manning's 'n' value would be required. The increase required is dependent upon the flow rate, flume slope and flume roughness, in other words, the terms that make up Manning's equation. The Manning's 'n' values that are needed to reproduce the normal depth documented by Liu et al (1957) are presented in Table 4-2 and Table 4-1 has been replicated as Table 4-3 to show the normal depths obtained by TUFLOW when using these revised values of Manning's 'n'.

Run ID	Manning's 'n' value (Liu et al, 1957)	Required Manning's 'n' value
E01	0.024	0.0258
E02	0.045	0.0550
E08	0.045	0.0565
E09	0.024	0.0248
E17	0.024	0.0244
E18	0.045	0.0468
E19	0.024	0.0244

 Table 4-2
 Calibrated Manning's 'n' values

 Table 4-3
 Initial Flume Calibration Results

Run ID	Normal Depth (m) (Liu et al, 1957)	Normal [(a	Depth obtained cross all 9 test	from TUFLOW
		Mean (m)	Median (m)	Standard Deviation
E01	0.101	0.101	0.101	0.000
E02	0.159	0.159	0.159	0.001
E08	0.146	0.146	0.146	0.000
E09	0.110	0.110	0.110	0.000
E17	0.148	0.148	0.148	0.000
E18	0.219	0.219	0.219	0.001
E19	0.127	0.127	0.127	0.000

4.2 Abutment Tests

4.2.1 Influence of Viscosity Coefficient

TUFLOW, by default, uses the Smagorinsky viscosity formulation to model the eddy viscosity which is used to approximate the effect of sub-grid scale turbulence. The work of Barton (2001) showed that the spatial resolution of a 2D model does have an impact on the ability of the model to predict the energy losses due to turbulent effects (Barton 2001).

A series of abutment tests were simulated within TUFLOW to determine the influence of the viscosity coefficient. The tests were undertaken using viscosity coefficients of 0.1, 0.2 (the default) and 0.4 and were all run using the Smagorinsky viscosity formulation. The results from one of these tests, in this case using a 5 foot opening, as presented in Figure 4-1.

Figure 4-1 Influence of Viscosity Coefficient

The results from these tests indicate that the viscosity coefficient has minimal influence over the model's predictive performance when the models are on a large grid (the left hand side of the figure). However, as the model's grid size becomes finer, the results using the different viscosity coefficients start to diverge. The spread of values appears to increase as the viscosity coefficient increases, and this is particularly evident for the fine grid scale models (the right hand side of the figure).

These results are not surprising. As the grid becomes finer relative to the scale of the turbulence the model inherently represents more of the losses and hence relies less on the viscosity formulation and so a small coefficient is required. For the current modelling, these results suggest the adoption of a viscosity coefficient equal to 0.1 would be appropriate to obtain a better match between the predictive results of TUFLOW and the recorded results of Liu et al (1957), especially at a fine grid scale.

These results are consistent with those of Barton (2001) and BMT WBM (2008) that indicates caution should be used when using very fine grids as the influence of the viscosity term can be particularly relevant.

A viscosity coefficient equal to 0.1 was adopted for the current research. This coefficient is different to that recommended in BMT WBM (2008), however, the model results support its use in this research. Additional research would be advantageous to confirm the applicability of the current TUFLOW default viscosity coefficient of 0.2 in a number of flow conditions, including the contraction and expansion of flow through a constriction.

4.2.2 Abutment Analysis

The results from the abutment tests were plotted to determine the influence of two components of the blockage on TUFLOW's predictive ability. The first of this components was the influence of the number of grids contained within the constriction (Figure 4-2) and secondly the influence of the number of grids adjacent to the blockage (Figure 4-6).

In each of these figures, the plotted points can be used to determine some details about the particular scenario being modelled. The squares, diamonds, triangles, circles and dashes correspond to models with a 2 foot, 3 foot, 4 foot, 5 foot and 6 foot constriction opening respectively, whilst each colour indicates a series of models running under the same set of conditions (inflow, slope, roughness).

Figure 4-2 Abutment Analysis – Influence of Grid: Constriction Ratio

These results suggest that once 6 elements exist within the constriction, the TUFLOW models will, within reasonable bounds, replicate the results recorded in Liu et al (1957). It was thought that the main influence on the model's ability to replicate the afflux would be related to its ability to represent the sub-grid scale turbulence. Whilst the model will never fully be able to represent the sub-grid scale turbulence due to limitation within the viscosity formulation, the representation of this turbulence would improve with finer grid scales. However, the expectation that at a large grid size, the TUFLOW model would under-predict the afflux when compared to the physical model is not supported by the results shown in Figure 4-2

Figure 4-2 suggests that models with less than 2 grids within the constriction will result in a poor correlation to the afflux determined by the physical flume model (TUFLOW results in a higher afflux). As seen in this figure, the models with poor correlation were generally simulating either a 2 foot or 3 foot opening, suggesting that there may be other factors influencing the results, rather than simply the representation of the sub-grid scale turbulence through contraction and expansion of the constriction.

A subset of Figure 4-2 is shown in Figure 4-3 and is displaying the results from the flumes with a 3 foot opening only. This figure clearly demonstrates the poor predictive performance of TUFLOW for a number of the flume tests when on a large grid scale. Figure 4-3 (and Figure 4-2) shows that as the grid size decreases, the model's predictive performance improves. It also highlights that, as mentioned previously, there are other factors influencing the results when the flume has a large grid size.

Figure 4-3 Abutment Analysis – Influence of Grid: Constriction Ratio (3 Foot Opening)

In exploring the poor correlation between TUFLOW and the physical flume when modelling a small opening on a large grid, the same results were plotted against the Froude Number (calculated at the location where the maximum afflux). The results from this analysis are plotted in their entirety in Figure 4-4, whilst a subset showing only the results from the models with a 3 foot opening is displayed in Figure 4-5.

Figure 4-4 and Figure 4-5 both show that for flow conditions resulting in a Froude Numbers that are very low, the TUFLOW model will over-predict the afflux. However, when the flow conditions change, resulting in a increased Froude Number, the model performance improves.

Figure 4-4 Abutment Analysis – Influence of Froude Number

Figure 4-5 Abutment Analysis – Influence of Froude Number (3 Foot Opening)

The results presented in Figure 4-4 indicate that for flow conditions resulting in a Froude Number of less than 0.1, the predictive performance of TUFLOW will be poor. However, when the flow conditions result in a Froude Number at the point of maximum afflux greater than 0.20, the results from the TUFLOW model have, within reasonable bounds, reproduced the results of the physical flume tests.

The abutment analysis was also undertaken to determine the influence, if any, of the number of grids located adjacent to the blockage. The results from this analysis are presented in Figure 4-6.

Figure 4-6 Abutment Analysis – Influence of Grid: Blockage Ratio

Unlike the results seen in Figure 4-2, Figure 4-6 shows no clear trend that the number of cells located adjacent to the blockage is having a significant influence on the results. In general terms, the results appear to indicate that if more than 6 grids exist adjacent to the blockage, the TUFLOW model will reproduce the results of the physical model within reasonable bounds. However, there are also a number of results where there are less than 6 grids adjacent to the blockage that also provides a good replication of the physical model results.

As discussed previously, the afflux determined by the models with a 2 foot and 3 foot opening appear to have other factors at play rather than simply the contraction and expansion through the opening. Therefore, if the results from these models were removed from Figure 4-6, the plot would look like Figure 4-7. Figure 4-7 shows that regardless of the number of grids adjacent to the blockage, there are TUFLOW models that are able to reproduce, within reasonable bounds, the results of the physical flume test.

Consequently, it could be argued that the number of grids within a constriction will be more important than the number of grids adjacent to the blockage when determining if a TUFLOW model will be able to reliable reproduce the results of a physical model.

4.3 Pier Analysis

The pier analysis was undertaken for four distinct types of piers; square shaft, single shaft, double shaft and round-ended narrow. As discussed previously, the pier losses were applied to the model in three distinct methods with the intention of determining an appropriate method to model piers within a 2D hydraulic model. The results from this analysis are presented in Figure 4-8 (Square Shaft Piers), Figure 4-9 (Single Shaft Piers), Figure 4-10 (Double Shaft Piers) and Figure 4-11 (Round-Ended Narrow Piers).

In general, the direct application of the pier loss coefficients obtained from the literature to the hydraulic model will result in the determination of a slightly conservative afflux, although the results are within reasonable bounds when compared to the physical flume results.

Figure 4-8 Pier Analysis – Square Shaft Piers

Figure 4-8 shows the results from the various methods of modelling a square shaft pier. These results are the only ones to include the piers modelled as a partial blockage of the model cell (light blue triangles). As shown in the figure, modelling a pier as a partial blockage of an individual element will almost certainly result in an afflux lower than that observed through the physical flume testing. Although the differences in this case are quite small, it would be expected that the differences would increase in real-world applications.

The square shaft piers are the only ones that result in a modelled afflux lower than the physical flume test when using either Method One (yellow squares) or Method Two (dark blue triangles) to apply the

form loss coefficients to the hydraulic model. It is thought that this is likely due to inaccuracies that have been introduced to the model in developing the form loss coefficients for the square shaft.

The following figures (Figure 4-9, Figure 4-10 and Figure 4-11) show the results from the single shaft piers, double shaft piers and round-ended narrow piers respectively. In general, the results between the two methods (Method One and Method Two) will be identical when the number of elements per pier is less than 1; however, this is not always the case due the way in which the piers are arranged across the cross section. In each of these figures, it can be seen that once number of elements per pier is greater than 1; the results from Method Two provide a closer match to those observed in the physical model.

These results indicate that it is more appropriate to apply the form loss coefficient calculated from the literature (eg: Austroads, 1994) to only the cells in which a pier will be located. Whilst this method will still result in slightly conservative predictions of afflux, they will less conservative when compared to the results when the form loss coefficient is applied across the entire cross section.

Figure 4-9 Pier Analysis – Single Shaft Piers

Figure 4-10 Pier Analysis – Double Shaft Piers

Figure 4-11 Pier Analysis – Round-Ended Narrow Piers

5 CONCLUSIONS AND RECOMMENDATIONS

The research that has been undertaken sought to test two specific hypothesises:

- 1. That a 2D modelling scheme can reproduce, within reasonable bounds of uncertainty, the contraction and expansion losses associated with flow through a bridge opening as indicated by physical model tests undertaken by Liu et al (Liu, Bradley, & Plate, 1957); and
- 2. That the energy loss coefficients associated with bridge piers as reported in Liu et al can be applied in a 2D modelling scheme to reproduce, within reasonable bounds, the increase in water level reported by Liu et al (1957).

The research that has been presented in this report has shown that for the majority of modelled flumes tested, these hypothesises can be considered true. However, a number of conclusions and recommendations have been determined based upon the results of the research and have been documented below:

- The importance of the viscosity coefficient increases as the grid size decreases and the turbulence associated with the flow conditions can be modelled as a grid scale rather than at a sub-grid scale.
- The predicted afflux of small constrictions relative to the grid size should be checked against additional methods to ensure the afflux is not significantly over-predicted.
- The results suggest that a modeller should try to include at least 6 model elements within a
 constriction to enable an accurate prediction of the afflux due to the contraction and
 expansion. The number of elements adjacent to the blockage is not a significant factor in the
 afflux predictions.
- The research has shown that the modelling of pier through the partial or complete blockage of individual elements will result in an under-prediction of the afflux due to the pier when compared against a physical flume result.
- The application of form loss coefficients obtained from the literature to individual elements where a pier is expected to occur is the best method (of the tested methods) to use in the modelling of piers within a 2D hydraulic model.

6 REFERENCES

AUSTROADS. (1994). "Waterway Design" - A Guide to the Hydraulic Design of Bridges, Culverts and Floodways. Sydney, Australia: Austroads Publication AP-23/94.

BMT WBM (2008). TUFLOW User Manual (2008 Version). BMT WBM Pty Ltd, Spring Hill, Queensland, 2008.

Barton, C. (2001). Flow through an abrupt Constriction - 2D Hydrodynamic Model Performance and Influence of Spatial Resolution. Queensland, Australia: Griffith University.

Bradley, J. (1978). Hydraulics of Bridge Waterways. Washington D.C.: Bridge Division, Federal Highways Administration (FHWA).

Craven, A. (2009). Scoping Study on Applying Form Losses to Model Hydraulic Structures in a 2D Hydrodynamic Scheme. Brisbane, Queensland: University of Queensland.

Crowder, R. A., Pepper, A. T., Whitlow, C., Sleigh, A., Wright, N., & Tomlin, C. (2004). Benchmarking Hydraulic River Modelling Software Packages. Results - Test J (Bridges). R&D Technical Report W5-105/TR2J. Bristol, United Kingdom: Environment Agency.

Liu, H., Bradley, J., & Plate, E. (1957). Backwater Effects of Piers and Abutments. Fort Collins, Colarado: Civil Engineering Section, Colorado State University.

Mattai, H. F. (1976). Measurement of Peak Discharge at Width Contractions by Indirect Methods. Washington: U.S. Geological Survey.

Muntisov, M. (1987). The Role of Two-dimensional Hydrualic Modelling in Bridge Waterway Analysis. Conference on Hydraulics in Civil Engineering (3rd: 1987: Melbourne, Vic) (pp. 71-76). Melbourne, Australia: Institution of Engineers, Australia.

Seckin, G. (2004). A simple formula for estimating backwater at bridge constricitons. Canadian Journal of Civil Engineering. Vol. 31, no. 4, 561 - 568.

Seckin, G., & Atabay, S. (2005). Experimental backwater analysis around bridge waterways. Canadian Journal of Civil Engineering Vol. 32, No. 6, 1015 - 1029.

Seckin, G., Haktanir, T., & Knight, D. W. (January 2007). A simple method for estimating flood flow around bridges. Proceedings of the Institution of Civil Eningeers. Water Management. Vol. 160, no.4, 195-202.

Seckin, G., Knight, D. W., Atabay, S., & Seckin, N. (October 2008). Improving bridge afflux prediction for overbank flows. Institution of Civil Engineers. Proceedings. Water Management (Inst. Civ. Eng. Proc. Water Manage.) Vol. 161, no. WM5, 253-260.

Seckin, G., Yurtal, R., & Haktanir, T. (1998). Contraction and expansion losses through bridge constrictions. Jounral of Hydraulic Engineering. Vol.142, no. 5, 546-549.

Sowinski, M. (2006). An uncertainty analysis of the flood-stage upstream from a bridge. Water Science and Technology Vol. 53, no.1, 77-84.

Syme, W. J. (2001). Modelling of Bends and Hydraulic Structures in a 2D Scheme. Conference on Hydraulics in Civil Engineering. Hobart, Australia: Institution of Engineers, Australia.

Syme, W. J., Jones, R., & Arneson, L. (2009). Two-Dimensional Flow Modelling of Hydraulic Structures in a 2D ADI Scheme. 33rd International Association of Hydraulic Engineering and Research Congress. Vancouver, Canada: International Association of Hydraulics and Research.

Syme, W. J., Nielson, C. F., & Charteris, A. B. (1998). Comparison of Two-Dimensional Hydrodynamic Modelling. International Conference on Hydraulics in Civil Engineering. Adelaide, Australia: Institution of Engineers, Australia.

Wellington, N. B., & Muntisov, M. (1984). Quasi-two Dimensional vs One-dimensional Modelling of Bridge Waterways. Conference on Hydraulics in Civil Engineering (2nd: 1984: Adelaide, S. Aust) (pp. 94-99). Adelaide, Australia: Institution of Engineers, Australia.

Yarnell, D. L. (1934). Bridge Piers as Channel Obstructions - Technical Bulletin 442. Washington: US Department of Agriculture.

Yarnell, D. L. (1934). Pile Trestles as Channel Obstructions, Technical Bulletin 429. Washington: US Department of Agriculture.

APPENDIX A: LIU ET AL (1957) FLUME DATA – EMBANKMENT MODELS

		81도	23.70	23.70	23,70	£3. (U	19,00	19.00	00.91 19.00	19.00		00 01 10 02	16,35	16.35	16.35	16.35	16.35		16,35	16.35	16.35	16.35	16.35	16.35	16.35	16.35	36 31	16,20	16.20	16.20	16, 20	15,10	15.10	15.10	15, 10	11 00	11,00	11,00	11.00	11,400						
		$\left[\frac{1}{M^2}-1\right]F_{n}^{2}$	1.220	0.244	0.125	190.0	0,126	0.258	0,503 1,025	2.510		0.521	1.608	0.165	. 0805	0.650	0.167	•	0.083	0.165	0.650	1.598	0,080	0.165	0.650	1.598	803 4	0.025	0.051	0.099	0.496	0.16	0.033	0.129	0.320	0.055	0,051	660°D	0,201	o. + 10						
		×	0.253	0,505	0.633	0.760	0,760	0.633	202.0	0.253		202.0	0.253	0,633	0.760	0.505	0.630		0,756	0.633	0.380	0.253	0.750	0.633	0.330	0.253	. 36 . 6	092.0	0.633	0.505	0.253	0,760	0.633	0.330	0.253	042.0	0.633	0.505	0.380	. 63.0						
		, r F	.0835	5680'	0835	CC 20 .	.172	.172	221.	172			110	0110	110		011		.110			110	011			.110	-	0339	0339	.0339	0339	.0219	0219	0219	,0219	DIID	6EE0.	,0339	0339	feen.						
	Data	ي يو	0.289	0.289	0,289	682.0	0.415	0.415	0.415	0,415		261.0	0,332	0.332	0.332	265.0	0.332		0.332	0.332	0.332	0.332	0,332	0.332	0,332	0.332		1, 554 1, 0	0.184	0.184	0.184	0.148	0 148 4 148	0,148	0,158	404 0	0,184	0,184	0,184	ñ, 10%						
	ompited	r [T	6.30	2.00 2,00	1.49	1.21	076.1	1.975	3.102	1.50		952.2	1,80	1.610	1.239	2,840 2,30	1.700		1.240	1.606	1.840	8,00	1,239	1.581	3.826	7,857		1.060	1.164	1.370	3, 190	1,052	1,130	1.590	2.490	070 1	1.168	1.390	1.852	017'C						
	01	र्दार्द्ध	1,849	1,258	1,140	1,066	1,110	1.255	1.460	2,260		1.307	1.983	1.171	1.074	1.566	191		1, 071	11.12	1. 314 1 566	2,000	1.074	1.165	1, 564	1.988		1.020	1, 052	1.111	1.471	1,018	1.040	1, 168	1, 354	020	1.053	1.116	1.228	1.40						
		en En	0.282	0. 296	0.305	0.311	0.361	0.345	0.330	0, 280		0.423		0.434	ı	0.414	440		0.445	0.433	0,415 0,415	0.377	0.447	0.433	0.407	0.386		0.461	0.457	0.452	0.449 6.440	0.510	0.507	0.500	0.496	001	0.691	0,688	0.680	7.0.0						
		PE	0.621	0.426	0.390	0.366	0.487	0.544	0.627	0.955		0.650		0.586		0.767	002 0		0.536	185.0	0.040	0.968	0.536	0.578	0.420	0.967		0.973 0.496	0,514	0.542	0.50	0,535	0.549	0.615	0,715	i t t	0.768	0,810	0.891	1,U0%						
		*= =	0.282	0.086	0.047	0.022 0	0.038	0,107	192	0.527	0.417	0.149	0.476 0.476	0.033	0.036	0.274		0,050	0.035	0.083	261.0	0.484	0.036	0,080	0.273	0.478	0.481	0.481	0.025	0.053	0,105	0.009	0.021	0.087	0.185	0.573	0.038	0.083	0,164	0.346	0.087	0,047	120,0	0,312	0.271 0.252	1
		*	3.5	ດ ດີດ ດີ	3.6	ں ج	, 0, 4 , 0, 4	3.6	9 ° 1	2.9	9.6 6	، ۱ ،	4. 81	2.62	,	2,90	• •	1.2		4.3	4,	* - * *	• [-	3.4	4 ×	1 1	4,5	ი, ი, ი	1 1 1	5.5 2	- u - 1	1 ग	3.0	5 C	 	4.6	4 N	; ; '	3.6	ი. ი.	0 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.05	3,85			• •
		^R DL	1.121	1.118	1.137	1.145	1.224	1.208	1,183	1.189 1.132	1.182	1.274	1.254	1,302	•	1.258	1.63.1	1.315	1.275	1.260	1.257	523.1	1.279	1.261	1.246	1.239	1.199	1.231	0.25.1	1.317	1.312	1.376	1.373	1, 372	1.362	1.269	1.566	1.556	1.547	1 535		,	- 517	1.541	1.546	1000 C
		, B	-110	127	Į.	145	47 T -	210	.205	.177	.167	.296 200		.290	ı	. 280	205		. 283	. 274	243	246	282	. 272		201	.239	. 218	110	315		100	373	371	.362	1.256	. 565 556	.552	1.545	1.541		,	- 5,10	543	1.553 757	
			455]	0.030	223	2002	5054 1925	- <u></u>	490	614 818	673	512	624	447	,	619	2	402	366	410	479	020	371	412	481	800	808	801	378	406	457	- 401 - 401	434	436 476	581	895	.610 623	676	760	.930		,	1 27 2	659	,619 207	
		يد ح	154 J.	[3]	1 1.2	000	9 1	60	192 I.			112 1.	31 6	148 1.		524 I.			974	1 1.	1.1	1 200	1 696	1. 1.	1.	000 202	304	307	377 I.	406 1	457 1		415 ì	437 l	1 280	895 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1929	754 1	929 1			-	2099	623 1	•
		י <u>ק</u> 	ی ۲. ۲	 					8		: : : :			2 9	0	8			: - : 5	57 1.			0.0	64 I	5	22	- - -		1 50	1	5	22	44 1.		28	53	593 	:	32 1.	50 1.	70	08		96 1:		John Land
		Ξ'n	0.61	0.48	0.38	0.35	0.68	0.52	0.60	00		0 (9	0.0		0	0.1	5 : 0 :		0	.0.5				0.5	0	00			23		9.9		0	а с о с		8	00		0.81	ā : 				5 6	00	- 0 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
		Slope	.0012	2100.	2100.	.0012	1912	200.	, 00 2	28. 28	100.	2100	8	38	001	100.			100	100	.100	8	10	100	100	100	001	195	28	200.	200.	28.	100.	99		100.	100	103	100.	100.	101	100.	100.	10.	100.	
	od Data	Rough- neas	Ваг	Баг гад	par Dar	Bar	Баг Тар	Bar	Bar	Bar Har	Å	Bar	Баг	Dar Far	Bar	Bar	Наг		Bar	Bar	Bar	Har I	Har Har	Bar	r E	Har Har	Цщ.	Bar	Baffle	Baffle	Baffle	Baffle	Baffle	Baffle	Baffle	Daffle	Baffle	Baffle	Baffle	Baffle	Har Tar	Bar	Bar	Baffle	Baine	
	Mcaeur	Bottom Rdg.	0.834	0.834	0,834	0.834	0.833	0.864	0.864	0.864	0,833	0,862	0.862	0.502	0.862	0.855	0.855		0.834	0.834	0.834	0.834	0.834	0.834	0,834	26.8 O	0.83	0.834	0.864	0.864	0.864	0.864 0.864	0.866	0.866	0.866	0.834	0.866	0.866	0,866	0.866	0.855	558 0	0,855	0,855	0.855	10.
		u u u	0, 333	0.333	0, 333	0, 333	0.352	0.416	0.416	0.416	0.418	0.484	0.484	0.484	0.484	0,484	0.484	0.484	0.484	0,484	0.484	0.484	0.484 0.484	484	0.484	0.484	0,484	0.484	0.478	0.478	0.478	0.478	0,523	0.523	0.523 0.523	0.523	0,18	0.718	0.718	0.718	0.333	0.333	0.333	1.484.0	0.484	* 0 1 * 1
		Q [cf6]	2,50	2.50	2.50	2,50	- 6 J	5 G	ç, 00	00°3	, 95°. 6	5.00	2.00	38	8.0	5,00	8'S	8 8 9 9	88	8.9	5,00	8. 9	88	90.9	5,00	88	2°.5	5, 00	27.2	2.72	2.72	2.72	2.50	2.50	0 1 1 1 1 1	1 1 2	9 G G	8 9 9 9	5,00	5,00	2,50	2,50	2.50	2 8. 3 8.	2 5 5	20.0 10.0
ONISS		ព [អ្	7.9	е.		7.9	о с г г	6.2	7.9	6°0 1-1	N 0.	6	6.1	6 ° -	0	7.9	÷.9			6.1	7.9	c, i	6° 6	6	1.9	6°	6.	7.9	с. 		7.9	0 0 	6.1	6.	 	2	с, і С, і			7.9	6, c		ۍ د	- r-	с г I	~
AL CRC nodel		ې لټ	2.0	0.0 1.1	5 0 1 0	6,0	2,0		4.0	9 9 9 9	0 7 7	4.0	3.0	0.2 2	9 0	3.00	4,00	4,97	5 07	5,00	4,00	3.00	2.00 7	5,00	4,00	00.6	2.00	2,00	6,00	4.00	3.00	2.00	2,00	4,00	00°2	2,00	6.00	4 00 4	3.00	2.00	2.98	4.98	6.00	2.00 4.00	5,00	9
E NORM board		Model Iength Ift]	.	,	(1	I	r		ł	ı		ī	f	ı		ı	•	,	, ,	ı	ł	ı		•	ı	1		ı	ŧ		I			4		: 1	ı	1 =	•	ı	·	•	ı	1.1	,	•
SIMPLI		Model height [ft]	1.67	1.67	20'1 1.67	r. 67		1.67	1.67	1.67	1.67	1.67	1.67	1,67	50	1.67	1.67	1.67	2.5	1.67	1.67	1.67	50	1.67	1.67	1.62	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1 C.	1. 62 1.	1.67	1.67	1.67		1.67	1.67	1.67	1.67
: 1 1		Model Type	ΔB AB	82	n m > >	87	a a	9 E > >	1 61	а 2	9 Ø 2 2	15	H۲	٩A	ם ם ≻ >	ΞA	ΥE	AB 1	4 P 2 A		Ч. Б.	Ч Р А	ЧР ЧР	H H H H	۲ı ۲	EA.	ч Ч Х	5	AE AE	а н > >	AB AB	5 S	- A - A	۳	۹×	9 F 2 2	Я I С Р	₽ ₽ 2 2	1 8	٧B	VB 111	a n > >	43	H A B A	18	È
TAB		Run No	357 -	358 	360 360	361	267	5 C C	, <u>0</u>	109	602 266	754	155	756	1010	87.2	873	87 4R	418 105	302	303	104	305	226	227	228	234	261	E03	409 909	606	607 603	451	452 -	453 4 6 4	797	159	460	407 462	463	858 77	5 0 J 8	861	1374	1375	1376

APPENDIX B: LIU ET AL (1957) FLUME DATA - PIER MODELS

	U	VO .	1.055	1.039	1.067	1.076	1.035		1.044	1.065	1.044	1,030	1.015	1. U/3	1,093	1.066	1.038	1.042	1.067	1.112	1.030	BTO 1	1.005	0.990	1.020	0.99.0	1.018	0.968 1.008	1.028	1.012	1.028	0.990	066.0	40,454	0.975	1,005	0.990	1.009	0.862	0.834	0.850 619 0	0.915	0.920	0.865	0.930	0.962	
ដា	×	,° !	4,15 2,85	2,19	1.38	3.42	3, 20		3,68	4.00	3.55	4. 28	00°.	3. 2U 1 45	2.10	1.45	2,40	1 2 4	2, 00	3.75	4.81 4.81	4.42	4.82	5.95	3.20	2.93	2.06	- 60 - 60 - 70	2.29	4.34	3.02	6.28	6.30	7.68	7.48	4.84	5,83	9 6	18.80	13.15	12,80	14,35	11,10	13. 50 06 - 51	8,55	7,35	۳۵. ۳
mputed Dat	뎶	ឝ	0.105 0.079	0.053	6.01.0	0.101	0.051		0.079	0,105	620°0	0,053	0,026	0.105	0,105	0.079	0,053	0,126	0.076	0,152	0.051	101.0	0.053	0.079	0,105 0.053	0.079	0, 105	0.105	0.053	0' 1 OS	0.079	0.074	0,051	cul .u	0,053	0, 105	0.019	0.026	0.066	0.092	0.119	0,053 .	0.079	0,105	0, 105	0.079	c ch .D
SI	£	ų	1.011 1.006	1.003	1,003	1,017	1,007		1.008	1.012	1.008	1,006	1.002	1.008	1.006	1.003	1.003	1:001	1,004	1.017	1.006	710,1	1.006	1.012	1.004	1.006	1.006	1.017 1.008	1.003	1.011	1,006	1.012	1.008	1,023	1.010	1.014	1.012	1,002	1,006	1.007	1,008	1.015	1,018	1.030 1.036	1.022	1.014	1,000
	8 1	E E	0.004	0.001	0,002 0,002	0.007	0,003	0.003	0.004	0,006	0,006 004	0.003	100.0	0.003	0.002	0.001	0.001	0.013	0.002	0.008	0.003	0,006	0.003	0.006	0,008	0,003	0,003	0.006	0,001	0.004	0.002	0.006	0.004	0.011	0,005	0.007	0.005	0.00	0,003	0.003	0,004 0,004	0,005	0,006	0.010	0.008	0.005	700'0
	٠																																														
	ł	2 2 2	0.364	0.361	0,362	0,423	0,419	0.485	0,488	0.490	0.490	0.487	0.485	0.363	0.362	0,361	0.361	0.429	0.466	0.492	0.487	0,490	0.487	0.490	0.492	0.487	0.487	0.366	0.361	0.364	0.362	0.490	0.488	0.495	0.489	0.491	0.490	0.488	0.538	0.539	0.540	0.338	0.339	0.343	0.368	0.365	0.362
	Diameter	of Piers [in]	0.625 0.625	0.625	1.25		2.4	0.625	0.625	0.625	. 25 25	5.1 52.1	1.25	0,625	1 25	1.25	1,25	9.0 .0	0 4 n r	ງ 42 1 ເກ	2.4	2.4	1.25	1.25	1.25	0.025 0.625	0.625	0.625	U,625 0.625	1.25	1,25	1, 25	2.4	1,25	67 - I	0.625	0.625	0.625	0.625	0.625	0.625	0,025 1525	D.625	0.625	0.625 0	0.625	0.625
534	- 64	Number of Piers	16 17	÷ 60	00 -	0 4	17	1 4 G	8 21	91	00 \	o 4	2	9	7	9 -0	4	- -	nt n	ડ ના	2	খা ব	~ 4	·	29 c	8 77 7 7	16	16 16	7 8	5 ec	¢	4 1 r	. ~	аў •	-0-4	91	12	eo •	+ ²	1	18	ৰ ৫	12	16 25	73 93 74	12	80
ter p vater		Type of Piers	EE	E	e I	E	11	e I	5 5	E	E	6 5	1	88	SS	. 55	8	20 20	50 S	20 V 20 V 20 V	3 63	52	រ ខ្លួ	1 13 1 13	0) 9)	20 20 20 20 20 20 20 20 20 20 20 20 20 2	90 92	ab.	ds d	9 9	ds	ę 4	da da	ds.	ds ds	ds ds	ds	sb ,	ទី	, L	£	L 1	. ⊑	L	. .	. <u>г</u> .	r.
<u>teasured Da</u>	ĩ	Slope	2100	2100.	.0012	2100	2100.	.0012	2100.2	2100.	. 2100.	2100.2	- 1012	2100.	2100.2	2100.	.0012	200.	2007	2100.	.0012	2100	20012	20012	,0012	2100.	2100.	2100.	2100.	.0012	2100.	2100.	0012	,0012	2100.2	2100.	2100.	.0012	2100	2100,	. 5100,	0012	0012	,0012	2100, 2100,	.0012	2100.
Σı		Rough-	Bar	Bar	Bar	Har Har	Bar	Bar	Bar Far	Bar	Bar	Ваг Раг	Day Day	Bar	Bar	Бат Баг		Bar	Bar	Bar Bar	Bar	Bar	Bar	Bar	Bar	Bar Bar	Bar	Ват	n Bar	Bar	Bar	Bar	Bar	Bar	Bar Dor	Bar	Ваг	Bar	Bar Baffie	Baffle	Baffle	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Bar	Bar	Ваг Раг	Bar	Bar
		Bottern Rdg.	0.855	0.855	0.855	0.855	0.864	0.855	0.855 0.855	0.855	0.855	0.855	258-0	0.855	0.855	0.855 855	0.855	0.864	0.864	0.866 5.966	0.866	0.866	0.855 A 655	0,855	0.855	0,855	0.855	0.855	0,855	0.855	0.855	0.855	0.853	0.855	0.855	0.855 0.855	0.855	0.855	0,855 0,855	199.0	0.854	ក្នុង ភូមិខ្ល	0.855	0.855	0.855 n #45	0.855	0,855
		- E	0.360	0.360 0.360	¢, 360	0,360	0,416	0,484	0.484	0.484	0.484	0.484 0.484	0.484	0,360	0,360	0.360	0.360	0.416	D.416	0,484	0.484 0.484	0.484	0.484	U.484 0.484	0.484	0.484 1.484	0.484	0.360	0,360	0.360	0.360	0.360	0.484 0.484	0.484	0.484	U.4344 0 484	0.484	0.484	0.434	0.536	0,536	0.333	0.333	0,333	0.333	0.360	0,360
ENTS		۔ ادتعا	3.00	3.00 3.00	3.00	3.00	5.00	5.00	5,00 5	5.00	5.00	5,00	00.c	3.00	3.00	00.0	00.6	5,00	00 S	5,00 5,00	00, e	5,00	5,00	00's	5,00	5,00	20 00 20 00	9,00 0,0	3,00	9 00 9 00 9 00	20°	3,00	5,00 5,00	5.00	5.00	, a 9 9	5,00	5, 00	90°s	2,50	2.50	2,50	2.50	2,50	2,50 2,50	5 8 5 8	3,00
UT ABUTM		B [11]	7.9	c 0	6.7	6.5 2.5	6.6	7.9	. 6.7	6 6	7.9	9.5 1.9	5. G	6.4	7.9	¢. (с. -	1.9	6.5	6. F	1.9	7,9		6.5	2.9	r.,	6.4	6.1	6 ° °	· ·	7.9	 	6.1	2.9	6°.	6.,	7.9	5°C	.	6.7	6-2		6.2	ۍ د د		1.9
JERS WITHO		و (2)	7.1	5 C C	1,1	۰. ۱	- 1 - 1	7.7	7.5	7.3	7.1	د. ۲	 	1.7	7.3		<u>م</u> م	6.7			6,7 7		3.8			ر بر م	د. د	7.1	7.3	7°2		7.5	ب م م	1.1	1.3			5.7		4 N	0.	2.7		1.1	6.9 ,		រា - F
TABLE 7 : P		Вцп No.		1134	1136	1137	444	BIII	H9111	1120	1122	1123	1124	1145	1147	1151	1152	596	265	608	609 610	611	0111	1111	1113	1126	11.27	11 68	114B	1149	1153	1155	623	1114	1115	1116	67 F 1	1131	1132	171	773	348	849 1410	851	852	1138	1140

	c _{DA}	1 610	0.995	0.905	0.917	0.894			0.815	0.887	0.915	0.839	0.868	0.900	0.910	0.940	0.935	0.945	0.959	0.977	1.010	1.023	296.0	0.950	0.932	
	°°	1 40	5.82	12,40	9.60	10,00			16.10	13,15	12.62	13,30	13.51	13,08	14.20	13.10	8.70	9.10	9.34	9.78	3.18	2.96	7.76	7.43	8.05	
puted Data		0.026	0.053	0.079	0.105	0.132			0.119	0.092	0.066	0.132	0.105	0.079	0,053	0.026	0.105	0.079	0.053	0.026	0.026	0.053	0.079	0,105	2112	
	च्चन्द्		200.1	1.027	1.029	1.039			1.009	1.006	1.004	1 039	1.030	1.021	1.015	1.009	1.022	1.017	1.011	1,006	1.002	1.004	1 017	1.023	1.0.1	
	* ¹ 4		0.001 0.004	0.013	0 014	0 019	0.004	0000	0 005	0 003	0.002	013	010 0	0 007	0.005	0.003	0008	0.006	0.004	0.002	0.001	0.002	D D D	110 0	015	
		I																								
	14 14		6499 0. 488 0	20F.D	408	0 503		0.407	143 0		0.007 0.528		D10.0	0110	355.0	955.0	846.0	0 366	0.364	1 362	0.485	0 485		105		665.D
	iameter of Piers finl		0.625	670°n	570'n	0.025 0 626	670°N	679°0	120.0	2010	670'N		670'n	570°.	5250	0.425	10,050	0.625	0.675	0.625	2070	0.050 0.505		170 °		c79.0
	Number .	1 7 101 0	4		71	16	50	4	12	81	14	10	02 ;	9	21		4 >	9:	7 1	0 -	4 .	* 4	2	21	10	50
a!	Type Disco	S JAL J	r	ч	L	r	ı	'n	5	ស្ដី	Šd	Sq	Sq	δ,	ស្តី	2,0	ភ្នំ	ភីដ	ក្ត	50,0	2.	ង្ក	ភ្ន	อัล	Ъ2	Sq
feasured Da	Slope		.0012	.0012	.0012	.0012	.0012	.0012	,0012	.0012	2100.	.0012	.0012	5012	2100.	2100	2100.	2100.	2100.	2100.	2100.	2100.	.0012	.0012	2100.	.0012
~ 1	Rough-	De55	Bar	Bar	Bar	Bar	Bar	Bar	Ваг	Baffle	Baffle	Baffle	Наг	Bar	Bar	Bar	Ear	Bar	Bar	Bar	Bar	Bar	Bar	Bar	Bar	Bar
	Bottom	Rdg.	0.855	0.855	0.815	0.855	0.855	0,855	0.855	0.854	0.854	0.854	0.855	0.855	0.855	0.855	0.855	0.855	0.855	0.855	0.855	0.855	0.855	0.855	0.855	0.855
	c c		0.484	0.484	0.484	0.484	0,484	0.484	0.484	0.536	0.536	0.536	0.333	0.333	0.333	0.333	0.333	0.360	0.360	0.360	0.360	0.484	0.484	0.484	0.484	0.484
	ď	[cfs]	5.00	5.00	5.00	5.00	5,00	5.00	5,00	2.50	2,50	2,50	2,50	2.50	2,50	2.50	2,50	3,00	3,00	3.00	3.00	5,00	5.00	5,00	5.00	5,00
	р	E	7.9	7.9	7.9	9.7	1,9	7.9	7.9	7.9	7.9	7.9	7.9	7.9	7.9	7.9	7.9	7.9	7.9	7.9	7.9	7.9	7.9	7.9	7.9	7.9
	Ą	[U]	7.7	2,5	2.3	7.1	6.9		7.3	7.0	7.2	7.4	6.9	7.1	7.3	7.5	7.7	7.1	7.3	7.5	7.7	7.7	7.5	7 .3		6.9
	Hun	No.	434	940	941	942	943	080	981	774	775	776	853	854	855	856	857	1141	1142	1143	1144	944	945	946	947	948

TABLE 7 : PIERS WITHOUT ABUTMENTS [continued]

APPENDIX C: TUFLOW MODEL RESULTS – ABUTMENT MODELS

TUFLOW MODEL RESULTS - ABUTMENT MODELS

		A	01	A	02	A	03	A	04	A	05
	Opening (m)	0.6	610	0.9	914	1.2	219	1.5	524	1.8	329
	h1 (m)	0.1	187	0.1	149	0.1	128	0.1	16	0.1	08
	Grid Size	h1 (calc)	% of Exp								
RP03	0.80264	0.248	132%	0.191	128%	0.110	86%	0.105	91%	0.103	95%
RP04	0.60198	0.251	134%	0.194	130%	0.109	85%	0.105	91%	0.103	95%
RP05	0.48158	0.253	135%	0.128	86%	0.117	92%	0.105	91%	0.101	93%
RP06	0.40132	0.254	136%	0.140	94%	0.116	91%	0.111	96%	0.103	95%
RP08	0.30099	0.180	96%	0.136	91%	0.119	93%	0.112	97%	0.104	96%
RP10	0.24079	0.170	91%	0.141	95%	0.123	96%	0.113	98%	0.108	100%
RP12	0.20066	0.179	95%	0.138	93%	0.123	96%	0.117	101%	0.108	100%
RP15	0.16053	0.183	98%	0.140	94%	0.125	98%	0.117	101%	0.110	102%
RP20	0.12040	0.190	101%	0.146	98%	0.126	99%	0.118	102%	0.114	105%

		А	06	A	07	А	08	А	09	А	10
	Opening (m)	0.6	610	0.9	914	1.2	219	1.5	524	1.8	329
	h1 (m)	0.2	287	0.2	224	0.1	185	0.1	159	0.1	141
	Grid Size	h1 (calc)	% of Exp								
RP03	0.80264	0.333	116%	0.252	113%	0.175	94%	0.137	86%	0.137	97%
RP04	0.60198	0.341	119%	0.186	83%	0.164	88%	0.136	85%	0.136	96%
RP05	0.48158	0.277	96%	0.223	100%	0.161	87%	0.141	88%	0.141	100%
RP06	0.40132	0.265	92%	0.210	94%	0.162	87%	0.149	93%	0.128	91%
RP08	0.30099	0.272	95%	0.206	92%	0.177	96%	0.149	93%	0.129	91%
RP10	0.24079	0.267	93%	0.208	93%	0.174	94%	0.154	97%	0.154	109%
RP12	0.20066	0.278	97%	0.222	99%	0.181	98%	0.160	100%	0.160	113%
BP15	0.16053	0.281	98%	0.215	96%	0.177	96%	0.164	103%	0.164	116%
RP20	0.12040	0.288	100%	0.218	97%	0.185	100%	0.168	105%	0.168	119%

		A	11	A	12	A	13	A	14	A	15
	Opening (m)	0.6	610	0.9	914	1.2	219	1.5	524	1.8	329
	h1 (m)	0.2	293	0.2	229	0.1	93	0.1	73	0.1	58
	Grid Size	h1 (calc)	% of Exp								
RP03	0.80264	0.371	127%	0.283	124%	0.171	89%	0.152	88%	0.150	95%
RP04	0.60198	0.376	128%	0.288	126%	0.166	86%	0.152	88%	0.150	95%
RP05	0.48158	0.287	98%	0.235	103%	0.173	90%	0.152	88%	0.148	93%
RP06	0.40132	0.253	86%	0.217	95%	0.172	89%	0.164	95%	0.149	94%
RP08	0.30099	0.278	95%	0.205	90%	0.180	93%	0.164	95%	0.150	95%
BP10	0.24079	0.261	89%	0.213	93%	0.183	95%	0.166	96%	0.158	100%
RP12	0.20066	0.278	95%	0.209	91%	0.183	95%	0.173	100%	0.159	100%
BP15	0 16053	0.282	96%	0.213	93%	0 185	96%	0 172	100%	0 163	103%
RP20	0.12040	0.291	99%	0.222	97%	0.191	99%	0.178	103%	0.172	109%

		A	16	А	17	А	18	A	19	A	20
	Opening (m)	0.6	610	0.9	914	1.2	219	1.5	524	1.8	329
	h1 (m)	0.2	214	0.1	78	0.1	62	0.1	53	0.1	49
	Grid Size	h1 (calc)	% of Exp								
RP03	0.80264	0.342	160%	0.267	150%	0.203	125%	0.151	98%	0.149	100%
RP04	0.60198	0.345	161%	0.269	151%	0.155	96%	0.151	98%	0.149	100%
RP05	0.48158	0.347	162%	0.167	94%	0.158	98%	0.150	98%	0.146	98%
RP06	0.40132	0.348	162%	0.169	95%	0.158	98%	0.154	100%	0.148	100%
RP08	0.30099	0.245	114%	0.173	97%	0.161	99%	0.154	100%	0.148	100%
RP10	0.24079	0.224	105%	0.178	100%	0.164	101%	0.155	101%	0.151	102%
RP12	0.20066	0.237	111%	0.175	98%	0.164	101%	0.159	104%	0.152	102%
BP15	0.16053	0.203	95%	0.177	100%	0.165	102%	0.159	104%	0.153	103%
RP20	0.12040	0.209	98%	0.182	102%	0.166	103%	0.160	104%	0.156	105%

		A	21	A	22	A	23	A	24	A	25
	Opening (m)	0.6	610	0.9	914	1.2	219	1.5	524	1.8	29
	h1 (m)	0.2	216	0.1	86	0.1	173	0.1	66	0.1	62
	Grid Size	h1 (calc)	% of Exp								
RP03	0.80264	0.371	172%	0.290	156%	0.224	130%	0.164	99%	0.162	100%
RP04	0.60198	0.373	173%	0.292	157%	0.226	131%	0.162	98%	0.161	99%
RP05	0.48158	0.374	173%	0.174	94%	0.168	97%	0.162	98%	0.159	98%
RP06	0.40132	0.374	173%	0.176	95%	0.169	98%	0.166	100%	0.162	100%
RP08	0.30099	0.376	174%	0.180	97%	0.170	99%	0.165	100%	0.161	99%
RP10	0.24079	0.214	99%	0.184	99%	0.172	100%	0.166	100%	0.163	101%
RP12	0.20066	0.226	105%	0.182	98%	0.173	100%	0.170	103%	0.164	101%
RP15	0.16053	0.204	95%	0.183	98%	0.173	100%	0.169	102%	0.164	101%
RP20	0.12040	0.209	97%	0.187	101%	0.175	101%	0.170	103%	0.167	103%

		A26		A27		A	28	A29		A30	
	Opening (m)	0.610		0.914		1.219		1.524		1.829	
	h1 (m)	0.3	323	0.269		0.244		0.230		0.223	
	Grid Size	h1 (calc)	% of Exp								
RP03	0.80264	0.508	157%	0.402	150%	0.310	127%	0.222	96%	0.220	98%
RP04	0.60198	0.510	158%	0.405	151%	0.226	93%	0.222	96%	0.221	99%
RP05	0.48158	0.512	158%	0.244	91%	0.233	95%	0.222	96%	0.219	98%
RP06	0.40132	0.511	158%	0.244	91%	0.232	95%	0.227	99%	0.219	98%
RP08	0.30099	0.440	136%	0.252	94%	0.235	96%	0.228	99%	0.221	99%
RP10	0.24079	0.305	94%	0.258	96%	0.240	98%	0.229	99%	0.225	101%
RP12	0.20066	0.348	108%	0.253	94%	0.238	97%	0.232	101%	0.224	100%
RP15	0.16053	0.294	91%	0.257	96%	0.241	99%	0.234	102%	0.227	102%
RP20	0.12040	0.302	93%	0.264	98%	0.242	99%	0.235	102%	0.231	103%

APPENDIX D: TUFLOW MODEL RESULTS – PIER MODELS

Madal	Domoin	Grid	Pier	Pier	No.	b1	Metho	d One	Metho	d Two	Method	d Three
Model	Domain	(m)	Туре	Diam. (m)	Piers	111	h1 (calc)	% exp	h1 (calc)	% exp	h1 (calc)	% exp
	RP03	0.803	sq	0.016	20	0.105	0.104	98.61%	0.104	98.61%	0.102	96.72%
	RP04	0.602	sq	0.016	20	0.105	0.104	98.61%	0.104	98.61%	0.102	96.72%
	RP05	0.482	sq	0.016	20	0.105	0.104	98.61%	0.104	98.61%	0.102	96.72%
	RP06	0.401	sq	0.016	20	0.105	0.104	98.61%	0.104	98.61%	0.102	96.72%
P01	RP08	0.301	sq	0.016	20	0.105	0.105	99.56%	0.105	99.56%	0.102	96.72%
	RP10	0.241	sq	0.016	20	0.105	0.105	99.56%	0.104	98.61%	0.103	97.67%
	RP12	0.201	sq	0.016	20	0.105	0.106	100.51%	0.105	99.56%	0.104	98.61%
	RP15	0.161	sq	0.016	20	0.105	0.108	102.41%	0.107	101.46%	0.106	100.51%
	RP20	0.120	sq	0.016	20	0.105	0.113	107.15%	0.113	107.15%	0.103	97.67%
	RP03	0.803	sq	0.016	16	0.105	0.103	98.52%	0.103	98.52%	0.102	97.56%
	RP04	0.602	sq	0.016	16	0.105	0.103	98.52%	0.103	98.52%	0.102	97.56%
	RP05	0.482	sq	0.016	16	0.105	0.103	98.52%	0.103	98.52%	0.102	97.56%
	RP06	0.401	sq	0.016	16	0.105	0.103	98.52%	0.103	98.52%	0.102	97.56%
P02	RP08	0.301	sq	0.016	16	0.105	0.104	99.48%	0.104	99.48%	0.102	97.56%
	RP10	0.241	sq	0.016	16	0.105	0.104	99.48%	0.103	98.52%	0.103	98.52%
	RP12	0.201	sq	0.016	16	0.105	0.104	99.48%	0.104	99.48%	0.103	98.52%
	RP15	0.161	sq	0.016	16	0.105	0.106	101.39%	0.105	100.43%	0.105	100.43%
	RP20	0.120	sq	0.016	16	0.105	0.111	106.17%	0.11	105.22%	0.101	96.61%
	RP03	0.803	sq	0.016	12	0.104	0.103	99.39%	0.103	99.39%	0.102	98.43%
	RP04	0.602	sq	0.016	12	0.104	0.103	99.39%	0.103	99.39%	0.102	98.43%
	RP05	0.482	sq	0.016	12	0.104	0.103	99.39%	0.103	99.39%	0.102	98.43%
	RP06	0.401	sq	0.016	12	0.104	0.102	98.43%	0.102	98.43%	0.102	98.43%
P03	RP08	0.301	sq	0.016	12	0.104	0.103	99.39%	0.103	99.39%	0.102	98.43%
	RP10	0.241	sq	0.016	12	0.104	0.103	99.39%	0.103	99.39%	0.102	98.43%
	RP12	0.201	sq	0.016	12	0.104	0.103	99.39%	0.103	99.39%	0.102	98.43%
	RP15	0.161	sq	0.016	12	0.104	0.104	100.36%	0.104	100.36%	0.103	99.39%
	RP20	0.120	sq	0.016	12	0.104	0.106	102.29%	0.106	102.29%	0.105	101.32%
	RP03	0.803	sq	0.016	8	0.103	0.102	99.01%	0.102	99.01%	0.102	99.01%
	RP04	0.602	sq	0.016	8	0.103	0.102	99.01%	0.102	99.01%	0.102	99.01%
	RP05	0.482	sq	0.016	8	0.103	0.102	99.01%	0.102	99.01%	0.102	99.01%
	RP06	0.401	sq	0.016	8	0.103	0.102	99.01%	0.102	99.01%	0.102	99.01%
P04	RP08	0.301	sq	0.016	8	0.103	0.102	99.01%	0.102	99.01%	0.102	99.01%
	RP10	0.241	sq	0.016	8	0.103	0.102	99.01%	0.102	99.01%	0.102	99.01%
	RP12	0.201	sq	0.016	8	0.103	0.102	99.01%	0.102	99.01%	0.102	99.01%
	RP15	0.161	sq	0.016	8	0.103	0.103	99.98%	0.103	99.98%	0.102	99.01%
	RP20	0.120	sq	0.016	8	0.103	0.104	100.95%	0.104	100.95%	0.103	99.98%
	RP03	0.803	sq	0.016	4	0.102	0.102	99.60%	0.102	99.60%	0.102	99.60%
	RP04	0.602	sq	0.016	4	0.102	0.102	99.60%	0.102	99.60%	0.102	99.60%
	RP05	0.482	sq	0.016	4	0.102	0.102	99.60%	0.102	99.60%	0.102	99.60%
P05	RP06	0.401	sq	0.016	4	0.102	0.102	99.60%	0.102	99.60%	0.102	99.60%
	RP08	0.301	sq	0.016	4	0.102	0.102	99.60%	0.102	99.60%	0.102	99.60%
	RP10	0.241	sq	0.016	4	0.102	0.102	99.60%	0.102	99.60%	0.102	99.60%
	RP12	0.201	sq	0.016	4	0.102	0.102	99.60%	0.102	99.60%	0.102	99.60%

Madal	Domoin	Grid	Pier	Pier	No.	b1	Metho	d One	Metho	od Two	Method	d Three
Model	Domain	(m)	Туре	Diam. (m)	Piers	111	h1 (calc)	% exp	h1 (calc)	% exp	h1 (calc)	% exp
	RP15	0.161	sq	0.016	4	0.102	0.102	99.60%	0.102	99.60%	0.102	99.60%
	RP20	0.120	sq	0.016	4	0.102	0.102	99.60%	0.102	99.60%	0.102	99.60%
	RP03	0.803	sq	0.016	16	0.112	0.112	99.85%	0.112	99.85%	0.111	98.96%
	RP04	0.602	sq	0.016	16	0.112	0.112	99.85%	0.112	99.85%	0.111	98.96%
	RP05	0.482	sq	0.016	16	0.112	0.112	99.85%	0.112	99.85%	0.111	98.96%
	RP06	0.401	sq	0.016	16	0.112	0.112	99.85%	0.112	99.85%	0.111	98.96%
P09	RP08	0.301	sq	0.016	16	0.112	0.113	100.74%	0.113	100.74%	0.111	98.96%
	RP10	0.241	sq	0.016	16	0.112	0.113	100.74%	0.113	100.74%	0.112	99.85%
	RP12	0.201	sq	0.016	16	0.112	0.114	101.63%	0.113	100.74%	0.112	99.85%
	RP15	0.161	sq	0.016	16	0.112	0.115	102.53%	0.115	102.53%	0.114	101.63%
	RP20	0.120	sq	0.016	16	0.112	0.121	107.88%	0.121	107.88%	0.111	98.96%
	RP03	0.803	sq	0.016	12	0.112	0.112	100.40%	0.112	100.40%	0.111	99.50%
	RP04	0.602	sq	0.016	12	0.112	0.112	100.40%	0.112	100.40%	0.111	99.50%
	RP05	0.482	sq	0.016	12	0.112	0.112	100.40%	0.112	100.40%	0.111	99.50%
	RP06	0.401	sq	0.016	12	0.112	0.112	100.40%	0.112	100.40%	0.111	99.50%
P10	RP08	0.301	sq	0.016	12	0.112	0.112	100.40%	0.112	100.40%	0.111	99.50%
	RP10	0.241	sq	0.016	12	0.112	0.112	100.40%	0.112	100.40%	0.111	99.50%
	RP12	0.201	sq	0.016	12	0.112	0.112	100.40%	0.112	100.40%	0.112	100.40%
	RP15	0.161	sq	0.016	12	0.112	0.114	102.19%	0.113	101.29%	0.113	101.29%
	RP20	0.120	sq	0.016	12	0.112	0.116	103.98%	0.115	103.09%	0.115	103.09%
	RP03	0.803	sq	0.016	8	0.111	0.111	100.05%	0.111	100.05%	0.111	100.05%
	RP04	0.602	sq	0.016	8	0.111	0.112	100.95%	0.112	100.95%	0.111	100.05%
	RP05	0.482	sq	0.016	8	0.111	0.111	100.05%	0.111	100.05%	0.111	100.05%
	RP06	0.401	sq	0.016	8	0.111	0.111	100.05%	0.111	100.05%	0.111	100.05%
P11	RP08	0.301	sq	0.016	8	0.111	0.112	100.95%	0.111	100.05%	0.111	100.05%
	RP10	0.241	sq	0.016	8	0.111	0.111	100.05%	0.111	100.05%	0.111	100.05%
	RP12	0.201	sq	0.016	8	0.111	0.111	100.05%	0.111	100.05%	0.111	100.05%
	RP15	0.161	sq	0.016	8	0.111	0.112	100.95%	0.112	100.95%	0.112	100.95%
	RP20	0.120	sq	0.016	8	0.111	0.113	101.85%	0.113	101.85%	0.113	101.85%
	RP03	0.803	sq	0.016	12	0.150	0.15	100.03%	0.15	100.03%	0.148	98.69%
	RP04	0.602	sq	0.016	12	0.150	0.15	100.03%	0.15	100.03%	0.148	98.69%
	RP05	0.482	sq	0.016	12	0.150	0.15	100.03%	0.15	100.03%	0.148	98.69%
	RP06	0.401	sq	0.016	12	0.150	0.149	99.36%	0.149	99.36%	0.148	98.69%
P15	RP08	0.301	sq	0.016	12	0.150	0.15	100.03%	0.15	100.03%	0.148	98.69%
	RP10	0.241	sq	0.016	12	0.150	0.15	100.03%	0.15	100.03%	0.149	99.36%
	RP12	0.201	sq	0.016	12	0.150	0.151	100.69%	0.15	100.03%	0.149	99.36%
	RP15	0.161	sq	0.016	12	0.150	0.152	101.36%	0.152	101.36%	0.151	100.69%
	RP20	0.120	sq	0.016	12	0.150	0.155	103.36%	0.154	102.69%	0.153	102.03%
	RP03	0.803	sq	0.016	16	0.151	0.151	100.08%	0.151	100.08%	0.148	98.09%
	RP04	0.602	sq	0.016	16	0.151	0.151	100.08%	0.151	100.08%	0.148	98.09%
P16	RP05	0.482	sq	0.016	16	0.151	0.151	100.08%	0.151	100.08%	0.148	98.09%
	RP06	0.401	sq	0.016	16	0.151	0.15	99.42%	0.15	99.42%	0.148	98.09%
	RP08	0.301	sq	0.016	16	0.151	0.151	100.08%	0.151	100.08%	0.148	98.09%

Model	Domain	Grid	Pier	Pier	No.	b1	Metho	d One	Metho	d Two	Method	d Three
wouer	Domain	(m)	Туре	Diam. (m)	Piers	111	h1 (calc)	% exp	h1 (calc)	% exp	h1 (calc)	% exp
	RP10	0.241	sq	0.016	16	0.151	0.152	100.74%	0.151	100.08%	0.149	98.76%
	RP12	0.201	sq	0.016	16	0.151	0.152	100.74%	0.152	100.74%	0.15	99.42%
	RP15	0.161	sq	0.016	16	0.151	0.155	102.73%	0.154	102.07%	0.152	100.74%
	RP20	0.120	sq	0.016	16	0.151	0.162	107.37%	0.162	107.37%	0.148	98.09%
	RP03	0.803	sq	0.016	20	0.152	0.152	99.94%	0.152	99.94%	0.148	97.31%
	RP04	0.602	sq	0.016	20	0.152	0.152	99.94%	0.152	99.94%	0.148	97.31%
	RP05	0.482	sq	0.016	20	0.152	0.152	99.94%	0.152	99.94%	0.148	97.31%
	RP06	0.401	sq	0.016	20	0.152	0.152	99.94%	0.152	99.94%	0.148	97.31%
P17	RP08	0.301	sq	0.016	20	0.152	0.153	100.59%	0.153	100.59%	0.148	97.31%
	RP10	0.241	sq	0.016	20	0.152	0.154	101.25%	0.153	100.59%	0.15	98.62%
	RP12	0.201	sq	0.016	20	0.152	0.155	101.91%	0.154	101.25%	0.151	99.28%
	RP15	0.161	sq	0.016	20	0.152	0.158	103.88%	0.157	103.22%	0.155	101.91%
	RP20	0.120	sq	0.016	20	0.152	0.165	108.48%	0.165	108.48%	0.15	98.62%
	RP03	0.803	rn	0.016	16	0.111	0.113	101.85%	0.113	101.85%		
	RP04	0.602	rn	0.016	16	0.111	0.113	101.85%	0.113	101.85%		
	RP05	0.482	rn	0.016	16	0.111	0.113	101.85%	0.113	101.85%		
	RP06	0.401	rn	0.016	16	0.111	0.112	100.95%	0.112	100.95%		
P18	RP08	0.301	rn	0.016	16	0.111	0.113	101.85%	0.113	101.85%		
	RP10	0.241	rn	0.016	16	0.111	0.113	101.85%	0.113	101.85%		
	RP12	0.201	rn	0.016	16	0.111	0.114	102.75%	0.114	102.75%		
	RP15	0.161	rn	0.016	16	0.111	0.116	104.55%	0.115	103.65%		
	RP20	0.120	rn	0.016	16	0.111	0.121	109.06%	0.121	109.06%		
	RP03	0.803	rn	0.016	12	0.149	0.15	100.85%	0.15	100.85%		
	RP04	0.602	rn	0.016	12	0.149	0.15	100.85%	0.15	100.85%		
	RP05	0.482	rn	0.016	12	0.149	0.15	100.85%	0.15	100.85%		
	RP06	0.401	rn	0.016	12	0.149	0.15	100.85%	0.15	100.85%		
P27	RP08	0.301	rn	0.016	12	0.149	0.15	100.85%	0.15	100.85%		
	RP10	0.241	rn	0.016	12	0.149	0.15	100.85%	0.15	100.85%		
	RP12	0.201	rn	0.016	12	0.149	0.151	101.52%	0.151	101.52%		
	RP15	0.161	rn	0.016	12	0.149	0.152	102.19%	0.152	102.19%		
	RP20	0.120	rn	0.016	12	0.149	0.155	104.21%	0.154	103.53%		
	RP03	0.803	rn	0.016	16	0.149	0.151	101.10%	0.151	101.10%		
	RP04	0.602	rn	0.016	16	0.149	0.151	101.10%	0.151	101.10%		
	RP05	0.482	rn	0.016	16	0.149	0.151	101.10%	0.151	101.10%		
	RP06	0.401	rn	0.016	16	0.149	0.151	101.10%	0.151	101.10%		
P28	RP08	0.301	rn	0.016	16	0.149	0.152	101.77%	0.152	101.77%		
	RP10	0.241	rn	0.016	16	0.149	0.152	101.77%	0.151	101.10%		
	RP12	0.201	rn	0.016	16	0.149	0.153	102.44%	0.152	101.77%		
	RP15	0.161	rn	0.016	16	0.149	0.155	103.78%	0.154	103.11%		
	RP20	0.120	rn	0.016	16	0.149	0.162	108.47%	0.162	108.47%		
	RP03	0.803	rn	0.032	8	0.149	0.151	101.10%	0.151	101.10%		
P29	RP04	0.602	rn	0.032	8	0.149	0.151	101.10%	0.151	101.10%		
	RP05	0.482	rn	0.032	8	0.149	0.151	101.10%	0.151	101.10%		

Model	Domain	Grid	Pier	Pier	No.	b1	Metho	d One	Metho	od Two	Method	d Three
Model	Domain	(m)	Туре	Diam. (m)	Piers		h1 (calc)	% exp	h1 (calc)	% exp	h1 (calc)	% exp
	RP06	0.401	m	0.032	8	0.149	0.151	101.10%	0.151	101.10%		
	RP08	0.301	rn	0.032	8	0.149	0.152	101.77%	0.151	101.10%		
	RP10	0.241	rn	0.032	8	0.149	0.152	101.77%	0.151	101.10%		
	RP12	0.201	rn	0.032	8	0.149	0.153	102.44%	0.152	101.77%		
	RP15	0.161	rn	0.032	8	0.149	0.155	103.78%	0.153	102.44%		
	RP20	0.120	rn	0.032	8	0.149	0.162	108.47%	0.161	107.80%		
	RP03	0.803	rn	0.032	6	0.149	0.15	100.85%	0.15	100.85%		
	RP04	0.602	rn	0.032	6	0.149	0.15	100.85%	0.15	100.85%		
	RP05	0.482	rn	0.032	6	0.149	0.15	100.85%	0.15	100.85%		
	RP06	0.401	m	0.032	6	0.149	0.15	100.85%	0.149	100.17%		
P30	RP08	0.301	rn	0.032	6	0.149	0.15	100.85%	0.15	100.85%		
	RP10	0.241	rn	0.032	6	0.149	0.15	100.85%	0.15	100.85%		
	RP12	0.201	rn	0.032	6	0.149	0.151	101.52%	0.15	100.85%		
	RP15	0.161	m	0.032	6	0.149	0.152	102.19%	0.151	101.52%		
	RP20	0.120	rn	0.032	6	0.149	0.155	104.21%	0.154	103.53%		
	RP03	0.803	SS	0.016	16	0.111	0.112	101.23%	0.112	101.23%		
	RP04	0.602	SS	0.016	16	0.111	0.112	101.23%	0.112	101.23%		
	RP05	0.482	SS	0.016	16	0.111	0.112	101.23%	0.112	101.23%		
P33	RP06	0.401	SS	0.016	16	0.111	0.112	101.23%	0.112	101.23%		
	RP08	0.301	SS	0.016	16	0.111	0.113	102.13%	0.113	102.13%		
	RP10	0.241	SS	0.016	16	0.111	0.113	102.13%	0.113	102.13%		
	RP12	0.201	SS	0.016	16	0.111	0.113	102.13%	0.113	102.13%		
	RP15	0.161	SS	0.016	16	0.111	0.115	103.94%	0.115	103.94%		
	RP20	0.120	SS	0.016	16	0.111	0.121	109.36%	0.121	109.36%		
	RP03	0.803	SS	0.091	4	0.131	0.134	102.48%	0.134	102.48%		
	RP04	0.602	SS	0.091	4	0.131	0.133	101.71%	0.133	101.71%		
	RP05	0.482	SS	0.091	4	0.131	0.133	101.71%	0.131	100.18%		
	RP06	0.401	SS	0.091	4	0.131	0.134	102.48%	0.132	100.95%		
P38	RP08	0.301	SS	0.091	4	0.131	0.135	103.24%	0.132	100.95%		
	RP10	0.241	SS	0.091	4	0.131	0.137	104.77%	0.134	102.48%		
	RP12	0.201	SS	0.091	4	0.131	0.139	106.30%	0.136	104.01%		
	RP15	0.161	SS	0.091	4	0.131	0.147	112.42%	0.145	110.89%		
	RP20	0.120	SS	0.091	4	0.131	0.153	117.01%	0.15	114.71%		
	RP03	0.803	SS	0.091	2	0.129	0.13	100.83%	0.129	100.05%		
	RP04	0.602	SS	0.091	2	0.129	0.13	100.83%	0.129	100.05%		
	RP05	0.482	SS	0.091	2	0.129	0.13	100.83%	0.129	100.05%		
	RP06	0.401	SS	0.091	2	0.129	0.13	100.83%	0.129	100.05%		
P39	RP08	0.301	SS	0.091	2	0.129	0.13	100.83%	0.129	100.05%		
	RP10	0.241	SS	0.091	2	0.129	0.131	101.61%	0.129	100.05%		
	RP12	0.201	SS	0.091	2	0.129	0.131	101.61%	0.13	100.83%		
	RP15	0.161	SS	0.091	2	0.129	0.133	103.16%	0.131	101.61%		
	RP20	0.120	SS	0.091	2	0.129	0.136	105.48%	0.134	103.93%		
P41	RP03	0.803	SS	0.091	4	0.150	0.152	101.36%	0.152	101.36%		

Madal	Domoin	Grid	Pier	Pier	No.	b1	Metho	d One	Metho	d Two	Method	d Three
woder	Domain	(m)	Туре	Diam. (m)	Piers		h1 (calc)	% exp	h1 (calc)	% exp	h1 (calc)	% exp
	RP04	0.602	SS	0.091	4	0.150	0.152	101.36%	0.152	101.36%		
	RP05	0.482	SS	0.091	4	0.150	0.152	101.36%	0.151	100.69%		
	RP06	0.401	SS	0.091	4	0.150	0.152	101.36%	0.151	100.69%		
	RP08	0.301	SS	0.091	4	0.150	0.154	102.69%	0.152	101.36%		
	RP10	0.241	SS	0.091	4	0.150	0.154	102.69%	0.152	101.36%		
	RP12	0.201	SS	0.091	4	0.150	0.156	104.03%	0.154	102.69%		
	RP15	0.161	SS	0.091	4	0.150	0.163	108.69%	0.162	108.03%		
	RP20	0.120	SS	0.091	4	0.150	0.168	112.03%	0.166	110.70%		
	RP03	0.803	SS	0.061	4	0.149	0.15	100.43%	0.15	100.43%		
	RP04	0.602	SS	0.061	4	0.149	0.15	100.43%	0.15	100.43%		
	RP05	0.482	SS	0.061	4	0.149	0.15	100.43%	0.149	99.76%		
	RP06	0.401	SS	0.061	4	0.149	0.15	100.43%	0.149	99.76%		
P43	RP08	0.301	SS	0.061	4	0.149	0.151	101.10%	0.15	100.43%		
	RP10	0.241	SS	0.061	4	0.149	0.151	101.10%	0.15	100.43%		
	RP12	0.201	SS	0.061	4	0.149	0.152	101.77%	0.151	101.10%		
	RP15	0.161	SS	0.061	4	0.149	0.154	103.11%	0.153	102.44%		
	RP20	0.120	SS	0.061	4	0.149	0.161	107.80%	0.16	107.13%		
	RP03	0.803	SS	0.032	6	0.149	0.149	99.76%	0.149	99.76%		
	RP04	0.602	SS	0.032	6	0.149	0.15	100.43%	0.15	100.43%		
	RP05	0.482	SS	0.032	6	0.149	0.149	99.76%	0.149	99.76%		
	RP06	0.401	SS	0.032	6	0.149	0.149	99.76%	0.149	99.76%		
P46	RP08	0.301	SS	0.032	6	0.149	0.15	100.43%	0.15	100.43%		
	RP10	0.241	SS	0.032	6	0.149	0.15	100.43%	0.149	99.76%		
	RP12	0.201	SS	0.032	6	0.149	0.15	100.43%	0.15	100.43%		
	RP15	0.161	SS	0.032	6	0.149	0.152	101.77%	0.151	101.10%		
	RP20	0.120	SS	0.032	6	0.149	0.155	103.78%	0.154	103.11%		
	RP03	0.803	SS	0.032	8	0.150	0.15	100.03%	0.15	100.03%		
	RP04	0.602	SS	0.032	8	0.150	0.15	100.03%	0.15	100.03%		
	RP05	0.482	SS	0.032	8	0.150	0.15	100.03%	0.15	100.03%		
	RP06	0.401	SS	0.032	8	0.150	0.15	100.03%	0.15	100.03%		
P47	RP08	0.301	SS	0.032	8	0.150	0.151	100.69%	0.15	100.03%		
	RP10	0.241	SS	0.032	8	0.150	0.151	100.69%	0.151	100.69%		
	RP12	0.201	SS	0.032	8	0.150	0.152	101.36%	0.151	100.69%		
	RP15	0.161	SS	0.032	8	0.150	0.154	102.69%	0.153	102.03%		
	RP20	0.120	SS	0.032	8	0.150	0.161	107.36%	0.161	107.36%		
	RP03	0.803	ds	0.016	16	0.112	0.113	101.29%	0.113	101.29%		
	RP04	0.602	ds	0.016	16	0.112	0.113	101.29%	0.113	101.29%		
	RP05	0.482	ds	0.016	16	0.112	0.113	101.29%	0.113	101.29%		
P51	RP06	0.401	ds	0.016	16	0.112	0.113	101.29%	0.113	101.29%		
	RP08	0.301	ds	0.016	16	0.112	0.114	102.19%	0.114	102.19%		
	RP10	0.241	ds	0.016	16	0.112	0.114	102.19%	0.113	101.29%		
	RP12	0.201	ds	0.016	16	0.112	0.115	103.09%	0.114	102.19%		
	RP15	0.161	ds	0.016	16	0.112	0.116	103.98%	0.116	103.98%		

Madal	Domoin	Grid	Pier	Pier	No.	b 1	Metho	d One	Metho	d Two	Method	d Three
Model	Domain	(m)	Туре	Diam. (m)	Piers		h1 (calc)	% exp	h1 (calc)	% exp	h1 (calc)	% exp
	RP20	0.120	ds	0.016	16	0.112	0.122	109.36%	0.121	108.46%		
	RP03	0.803	ds	0.016	12	0.111	0.112	101.23%	0.112	101.23%		
	RP04	0.602	ds	0.016	12	0.111	0.112	101.23%	0.112	101.23%		
	RP05	0.482	ds	0.016	12	0.111	0.112	101.23%	0.112	101.23%		
	RP06	0.401	ds	0.016	12	0.111	0.112	101.23%	0.112	101.23%		
P52	RP08	0.301	ds	0.016	12	0.111	0.113	102.13%	0.113	102.13%		
	RP10	0.241	ds	0.016	12	0.111	0.113	102.13%	0.112	101.23%		
	RP12	0.201	ds	0.016	12	0.111	0.113	102.13%	0.113	102.13%		
	RP15	0.161	ds	0.016	12	0.111	0.114	103.03%	0.114	103.03%		
	RP20	0.120	ds	0.016	12	0.111	0.116	104.84%	0.115	103.94%		
	RP03	0.803	ds	0.032	8	0.111	0.113	101.85%	0.113	101.85%		
	RP04	0.602	ds	0.032	8	0.111	0.113	101.85%	0.113	101.85%		
	RP05	0.482	ds	0.032	8	0.111	0.113	101.85%	0.113	101.85%		
	RP06	0.401	ds	0.032	8	0.111	0.113	101.85%	0.113	101.85%		
P54	RP08	0.301	ds	0.032	8	0.111	0.114	102.75%	0.113	101.85%		
	RP10	0.241	ds	0.032	8	0.111	0.114	102.75%	0.113	101.85%		
	RP12	0.201	ds	0.032	8	0.111	0.115	103.65%	0.114	102.75%		
	RP15	0.161	ds	0.032	8	0.111	0.116	104.55%	0.115	103.65%		
	RP20	0.120	ds	0.032	8	0.111	0.122	109.96%	0.121	109.06%		
	RP03	0.803	ds	0.032	8	0.151	0.152	100.74%	0.152	100.74%		
	RP04	0.602	ds	0.032	8	0.151	0.152	100.74%	0.152	100.74%		
	RP05	0.482	ds	0.032	8	0.151	0.152	100.74%	0.152	100.74%		
	RP06	0.401	ds	0.032	8	0.151	0.152	100.74%	0.152	100.74%		
P57	RP08	0.301	ds	0.032	8	0.151	0.153	101.41%	0.152	100.74%		
	RP10	0.241	ds	0.032	8	0.151	0.153	101.41%	0.152	100.74%		
	RP12	0.201	ds	0.032	8	0.151	0.154	102.07%	0.152	100.74%		
	RP15	0.161	ds	0.032	8	0.151	0.156	103.40%	0.154	102.07%		
	RP20	0.120	ds	0.032	8	0.151	0.163	108.04%	0.161	106.71%		
	RP03	0.803	ds	0.032	6	0.150	0.151	100.69%	0.151	100.69%		
	RP04	0.602	ds	0.032	6	0.150	0.151	100.69%	0.151	100.69%		
	RP05	0.482	ds	0.032	6	0.150	0.151	100.69%	0.151	100.69%		
	RP06	0.401	ds	0.032	6	0.150	0.15	100.03%	0.15	100.03%		
P58	RP08	0.301	ds	0.032	6	0.150	0.151	100.69%	0.15	100.03%		
	RP10	0.241	ds	0.032	6	0.150	0.151	100.69%	0.15	100.03%		
	RP12	0.201	ds	0.032	6	0.150	0.152	101.36%	0.15	100.03%		
	RP15	0.161	ds	0.032	6	0.150	0.153	102.03%	0.151	100.69%		
	RP20	0.120	ds	0.032	6	0.150	0.156	104.03%	0.154	102.69%		
	RP03	0.803	ds	0.032	4	0.149	0.149	99.97%	0.149	99.97%		
	RP04	0.602	ds	0.032	4	0.149	0.15	100.64%	0.15	100.64%		
P59	RP05	0.482	ds	0.032	4	0.149	0.149	99.97%	0.149	99.97%		
	RP06	0.401	ds	0.032	4	0.149	0.149	99.97%	0.149	99.97%		
	RP08	0.301	ds	0.032	4	0.149	0.15	100.64%	0.149	99.97%		
	RP10	0.241	ds	0.032	4	0.149	0.15	100.64%	0.149	99.97%		

	D .	Grid	Pier	Pier	No.		Method One Method Two Method T h1 (calc) % exp h1 (calc) % exp h1 (calc) 49 0.15 100.64% 0.149 99.97% 49 0.151 101.31% 0.15 100.64% 49 0.152 101.98% 0.151 101.31% 50 0.152 101.57% 0.152 101.57% 50 0.152 101.57% 0.152 101.57% 50 0.152 101.57% 0.152 101.57%	1 Three				
wodei	Domain	(m)	Туре	Diam. (m)	Piers	nı	h1 (calc)	% exp	h1 (calc)	% exp	h1 (calc)	% exp
	RP12	0.201	ds	0.032	4	0.149	0.15	100.64%	0.149	99.97%		
	RP15	0.161	ds	0.032	4	0.149	0.151	101.31%	0.15	100.64%		
	RP20	0.120	ds	0.032	4	0.149	0.152	101.98%	0.151	101.31%		
	RP03	0.803	ds	0.016	16	0.150	0.152	101.57%	0.152	101.57%		
	RP04	0.602	ds	0.016	16	0.150	0.152	101.57%	0.152	101.57%		
	RP05	0.482	ds	0.016	16	0.150	0.152	101.57%	0.152	101.57%		
	RP06	0.401	ds	0.016	16	0.150	0.152	101.57%	0.152	101.57%		
P60	RP08	0.301	ds	0.016	16	0.150	0.153	102.23%	0.153	102.23%		
	RP10	0.241	ds	0.016	16	0.150	0.153	102.23%	0.152	101.57%		
	RP12	0.201	ds	0.016	16	0.150	0.154	102.90%	0.153	102.23%		
	RP15	0.161	ds	0.016	16	0.150	0.156	104.24%	0.155	103.57%		
	RP20	0.120	ds	0.016	16	0.150	0.163	108.92%	0.163	108.92%		
	RP03	0.803	ds	0.016	12	0.149	0.151	101.10%	0.151	101.10%		
	RP04	0.602	ds	0.016	12	0.149	0.151	101.10%	0.151	101.10%		
	RP05	0.482	ds	0.016	12	0.149	0.151	101.10%	0.151	101.10%		
	RP06	0.401	ds	0.016	12	0.149	0.15	100.43%	0.15	100.43%		
P61	RP08	0.301	ds	0.016	12	0.149	0.151	101.10%	0.151	101.10%		
	RP10	0.241	ds	0.016	12	0.149	0.151	101.10%	0.15	100.43%		
	RP12	0.201	ds	0.016	12	0.149	0.152	101.77%	0.151	101.10%		
	RP15	0.161	ds	0.016	12	0.149	0.153	102.44%	0.152	101.77%		
	RP20	0.120	ds	0.016	12	0.149	0.156	104.45%	0.155	103.78%		
	RP03	0.803	ds	0.016	8	0.149	0.149	100.17%	0.149	100.17%		
	RP04	0.602	ds	0.016	8	0.149	0.15	100.85%	0.15	100.85%		
	RP05	0.482	ds	0.016	8	0.149	0.149	100.17%	0.149	100.17%		
	RP06	0.401	ds	0.016	8	0.149	0.149	100.17%	0.149	100.17%		
P62	RP08	0.301	ds	0.016	8	0.149	0.15	100.85%	0.149	100.17%		
	RP10	0.241	ds	0.016	8	0.149	0.15	100.85%	0.149	100.17%		
	RP12	0.201	ds	0.016	8	0.149	0.15	100.85%	0.149	100.17%		
	RP15	0.161	ds	0.016	8	0.149	0.151	101.52%	0.15	100.85%		
	RP20	0.120	ds	0.016	8	0.149	0.152	102.19%	0.151	101.52%		

APPENDIX E: ABSTRACT SUBMITTED TO THE 7TH BIENNIAL VICTORIAN FLOODPLAIN MANAGERS CONFERENCE

Backwater Effects of Bridge Piers and Abutments in 2D – Replication of Physical Model Tests in a 2D Hydrodynamic Model

Joel Leister¹ and Mark Jempson²

¹Senior Environmental Engineer, BMT WBM Pty Ltd, Melbourne, Australia Phone: (03) 8620 6100 Email: joel.leister@bmtwbm.com.au

²National Practice Leader – Flooding and Hydraulics, BMT WBM Pty Ltd, Melbourne, Australia Phone: (03) 8620 6100 Email: mark.jempson@bmtwbm.com.au

Abstract

Bridge embankments and structures can significantly influence flooding patterns and levels on floodplains. It is important to reliably estimate these influences to properly understand and mitigate their impacts to properties and communities on the floodplain. The literature (Austroads 1994; Bradley 1978) provides details of how to estimate contraction and expansion losses and pier losses for desktop analysis. However, limited guidance is provided as to the application of these losses in a 2D modeling environment. As 2D flood modeling is now the industry standard for floodplain investigations, further guidance is required as to the application of the data presented in the literature.

BMT WBM is currently undertaking research that involves the replication of physical flume models tests (undertaken at Colorado State University by Liu, Bradley and Plate, 1957) in the 2D hydraulic model, TUFLOW. The data from these physical flume tests formed the basis of all current literature into the contraction and expansion losses and pier losses of bridges. This paper will present the research that has been undertaken by BMT WBM and discuss its implications for the representation of key structures in 2D flood models.

APPENDIX F: PRESENTATION MADE TO THE 7TH BIENNIAL VICTORIAN FLOODPLAIN MANAGERS CONFERENCE

