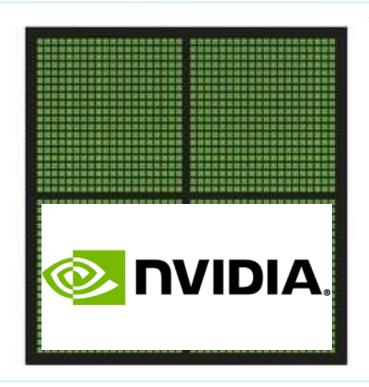


Flood Modelling Using GPU Hardware

12D Conference Brisbane, Australia Chris Huxley

Presentation Overview

- 1. What is GPU?
- 2. How does the new GPU solver compare to the existing CPU Solver?
- 3. Example Applications
 - High Resolution 1D/2D Urban Assessment
 - Whole of Catchment Modelling
 - Flood Forecasting
- 4. Questions



What is GPU?

What is GPU? Graphics Processing Unit

Traditionally used for graphics visualisation Now used for scientific compute too

- Accelerated hardware development since 2000
- Parallel computing is used to achieve computation gains
- TUFLOW is NVIDIA GPU compatible (not AMD)
- We support multiple GPU cards
- 10 100 simulation speed up compared to CPU

What is GPU? Graphics Processing Unit

Are all GPU cards equal?

https://wiki.tuflow.com

- Hardware benchmarking
- GPU modelling guidance

TUFLOW Set-up and use

TUFLOW

- How to install TUFLOW
- · How to configure a licence
- How to build a TUFLOW model (tutorials)
- · How to run a TUFLOW model
- Free pre/post-processing utilities

START

TUFLOW Benchmarks

- TUFLOW Solution Accuracy Benchmarks
- Computer Hardware Speed Benchmarks
- Computer Hardware Speed Benchmarks New 2018 Release Version

Best Practice Guidance

- Webinar Recordings
- Other Useful Modelling Guidance

How does the GPU and CPU solvers compare?

TUFLOW HPC (GPU Module)

Solution Scheme

Explicit, Finite Volume shock capturing solution

Better suited to parallelisation than implicit schemes (Classic)

4th order in time, Runge-Kutta integration solution

2nd Order in space the default

Same spatial order and cell design as Classic

Adaptive timestep design

- Courant number
- Wave celerity number
- Diffusion number

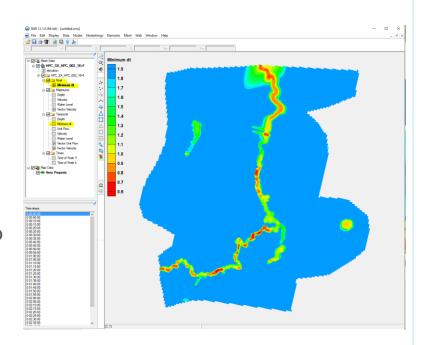
Unconditional stability

Exceptionally stable >> user beware ©

$$N_u = \max\left(\frac{|u|\Delta t}{\Delta x}, \frac{|v|\Delta t}{\Delta y}\right) \le 1.0$$

$$N_c = \max\left(\frac{\sqrt{gh}\Delta t}{\Delta x}, \frac{\sqrt{gh}\Delta t}{\Delta y}\right) \le 1.0$$

$$N_d = \max\left(\frac{\nu_T \Delta t}{\Delta x^2}, \frac{\nu_T \Delta t}{\Delta y^2}\right) \le 0.3$$

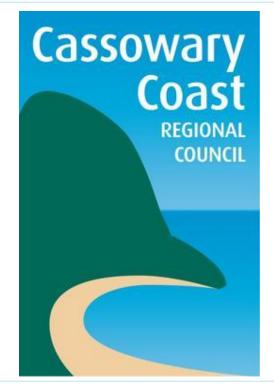

Classic vs HPC Beware of the stability!

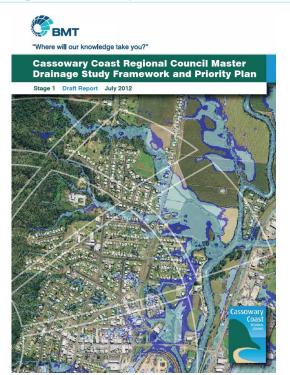
Classic (CPU)

- Can go unstable (as we all know!) due to matrix solution not converging
- Instabilities highlight bad data / poor model setup and force the modeller to fix models

HPC (GPU)

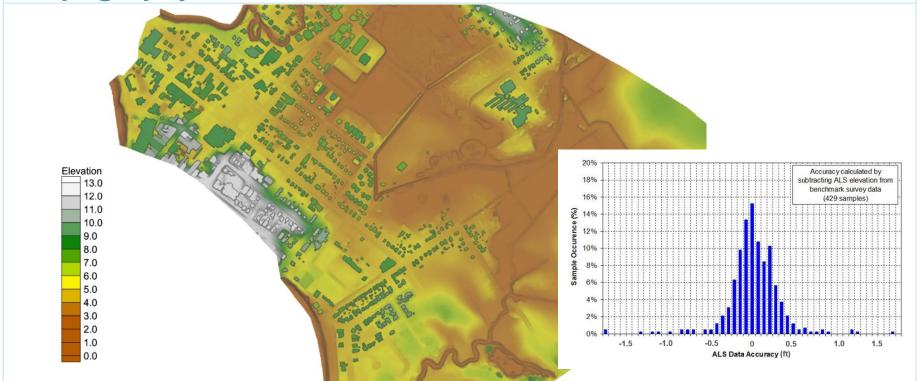
- VERY VERY stable and has zero mass error
- This may hide poor data or poor model set up (accidental boundary condition or topography errors)
- Use 'dt" output with check files to review location of minimum limiting timestep

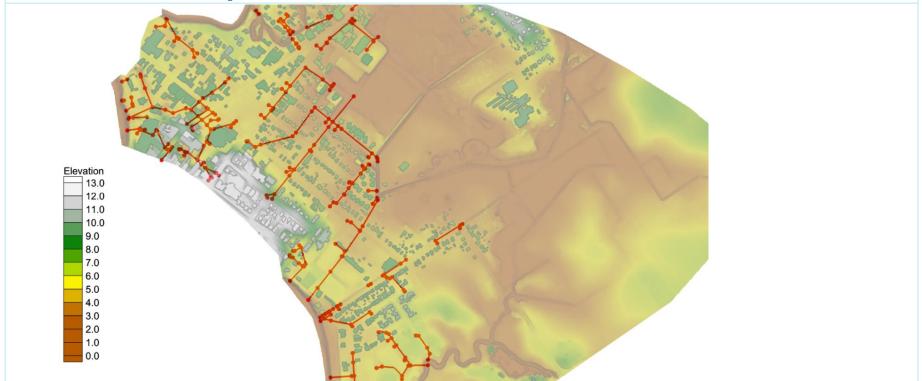


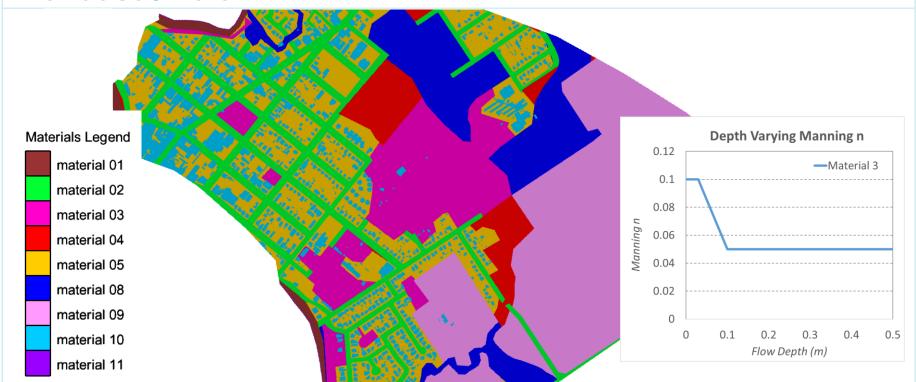


Example Applications

Council Master Drainage Study




Topography Data


Stormwater Pipe Network

Landuse / Data

Direct Rainfall Approach

Inundation is mapped when depth exceeds 0.1m

What Matters?

What 2D model resolution...

How fine for urban situations?

• 20m 7,500 cells


• 10m 31,000 cells

• 5m 125,000 cells

• 2m 750,000 cells

• 1m 3,100,000 cells

• 0.5m 12,500,000 cells

What Matters?

What 2D model resolution...

How fine for urban situations?

• 20m **X** 7,500 cells

• 10m **X** 31,000 cells

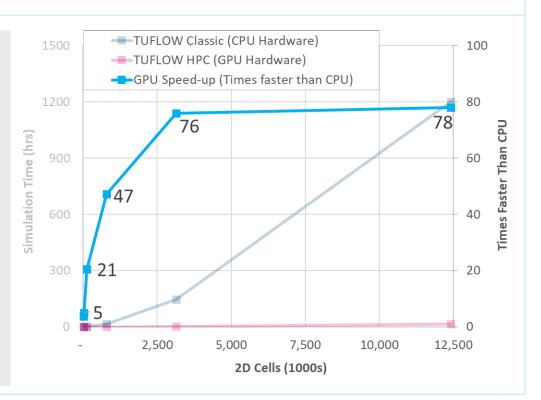
• 5m 🗶 125,000 cells

2m √ 750,000 cells

• 1m **3**,100,000 cells

0.5m

✓ 12,500,000 cells



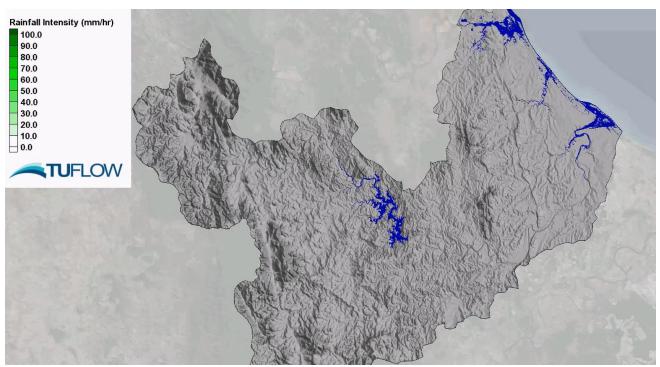
High Resolution 1D/2D Urban Assessment What Matters?

Solver/Hardware Comparison

Simulation speed

		CPU	GPU	
	20m	0:42 hr	0:03 hr	
_	10m	0:15 hr	0:03 hr	
_	5m	1:32 hr	0:05 hr	
•	2m	15:19 hr	0:20 hr	
•	1m	14 0 0 hr	1:55 hr	
•	0.5m	≈48 days	18.30 hr	

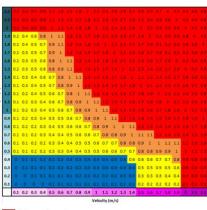
Bundaberg Non-Urban Overland Mapping Study Catchment Scale Modelling



Bundaberg Non-Urban Overland Mapping Study Catchment Scale Modelling

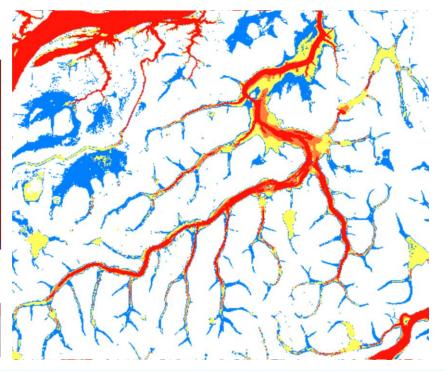
- 7,000 km² area
- 15m cell size
- 6 durations
- 1% AEP existing
 + future climate

Duration	Percentage of area where critical	
10min	1.4%	
20min	29.17%	
30min	2.15%	
1hr	24.96%	
2hr	11.48%	
6hr	2.2%	
12hr	6.92%	
24hr	9.49%	
48hr	3.47%	
72hr	8.76%	



Bundaberg Non-Urban Overland Mapping Study Catchment Scale Modelling

- 7,000 km² area
- 15m cell size
- 6 durations
- 1% AEP existing
 + future climate

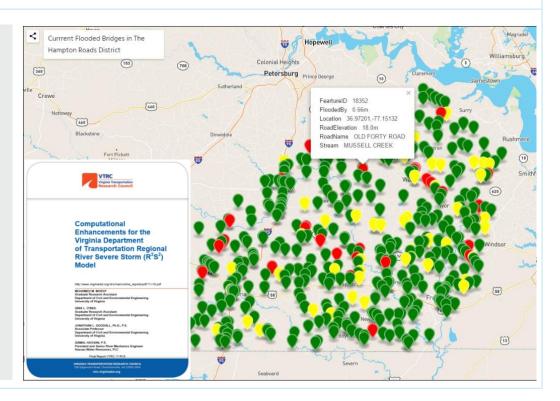

Duration	Percentage of area where critical	
10min	1.4%	
20min	29.17%	
30min	2.15%	
1hr	24.96%	
2hr	11.48%	
6hr	2.2%	
12hr	6.92%	
24hr	9.49%	
48hr	3.47%	
72hr	8.76%	

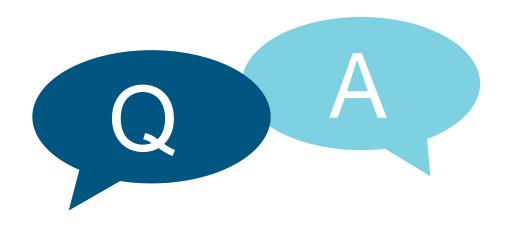
>30,000,000 2D cells

Extreme Hazard
High Hazard
Significant Hazard
Low Hazard

	Low	Significant	High	Extreme
Depth	<0.5	<2	<2	2+
Velocity	<1.5	<2	<2	2+
D x V Product	<0.6	0.6 to <0.8	0.8 to <1.2	1.2+

Real-time Flood Forecasting




Real-time Flood Forecasting

- Automated flood forecasting using Google Cloud GPU hardware
- NOAA rainfall forecast data
- Direct rainfall TUFLOW hydraulic simulation
- Real-time bridge inundation risk results are uploaded to a DoT website

