1D and 2D Modelling of Bends and Hydraulic Structures

Form Losses

- Energy dissipated as heat due to changes in velocity magnitude and direction
- Pronounced at
 - Bends
 - Flow constrictions (structures)
- Form loss coefficient
 - Proportion of dynamic head (V²/2g) lost
 - V = 1m/s; Dynamic Head = 0.05m
 - V = 4m/s; Dynamic Head = 0.82m.

Right-Angled Bend 1D vs 2D

River Bends

- 4 m/s
- 20 m deep
- 0.4msuperelevation at bend

2D vs 3D?

Bends - Conclusions 1D and 2D Approaches

- 1D
 - Apply extra losses by
 - Form loss coefficient, or
 - Increasing Manning's n
 - Do not model superelevation
- 2D
 - Form losses inherent / Models superelevation
 - However
 - Are model elements too coarse to simulate all losses?
 - Are there losses in the vertical plane? (Helicoidal circulations)
 - Additional form losses may be required

Hydraulic Structures

- Hydraulic Structures
 - Bridges and Embankments
 - Large Culverts
- Hydraulics is Complex (3D)
 - 1D: Traditional Approach
 - 2D: Looks impressive, but is it accurate?
 - 1D/2D: Best of both?

1D: Traditional Approach Uses Contraction/Expansion Losses

2D: Looks impressive, but is it accurate?

2D: No Contraction/Expansion Losses?

So 2D isn't perfect! What are our options?

Don't use 2D!

Adapt 2D Solution

Insert 1D Solution

2D Scheme Modifications

2D Layered Adjustments

"Calibrating" a 2D Solution

For example, if we apply a 0.2 FLC, ie. add 0.2*V²/2g energy loss

"Calibrating" Box Culverts

Culvert as 1D Element

> Reduce Outlet Loss Coefficient by 0.2

Modelling Culverts - Conclusions

- Culvert as 2D Cell(s)
 - 2D solution models 70 to 80% of losses
 - Need 20 to 30% additional form losses
- Culvert as 1D Element
 - Over predicts losses by 0 to 70%
 - Small 0% over prediction
 - Large up to 70% over prediction
 - Reduce inlet / outlet losses of 1D element(s)

Embankments / Levees

(Weir Flow)

- Approach
 - Test submergence across cell side
 - BC Weir equation if unsubmerged
 - No adjustment if submerged
- Thin Weir Test

Oblique Weirs

- Flow oblique to grid
- Weir at 45° test
- Correct using weir coefficient

Real World Example

- Bruce Hwy, Eudlo Creek, Qld – 1998
- Bridge Piers and Deck
- Weir flow over levees
- Nested 1D Elements
 - Pipes
 - Weir flow over bridge deck

Real-World Applications

- 2D Schemes need to:
 - Adjust cell: widths / flow areas / wetted perimeters
 - Set cell obverts (lids)
 - Apply additional form losses
 - Handle unsubmerged weir flow
- Nested 1D Elements need to:
 - Reduce inlet/outlet loss coefficients (to prevent over prediction of losses)

Conclusions

- 2D contracts and expands flow lines
 - Inherently models form losses
- May not model 100% of losses
 - Need ability to add form losses (calibrate)
- Need momentum terms
- Nesting 1D elements
 - Useful when the structure is small
 - May over predict losses
 - Need to reduce inlet / outlet losses (calibrate)
- Check and UNDERSTAND your results

